What mechanisms drive cell migration and cell interactions in Pleurodeles?

Int J Dev Biol

Biologie Moléculaire et Cellulaire du Développement, Groupe Biologie Expérimentale, URA CNRS, Université Pierre et Marie Curie, Paris, France.

Published: August 1996

Embryogenesis implies a strict control of cell interaction and cell migration. The spatial and temporal regulation of morphogenetic movements occurring during gastrulation is directly dependent on the early cell interactions that take place in the blastula. The newt Pleurodeles waltl is a favorable model for the study of these early morphogenetic events. The combination of orthotopic grafting and fluorescent lineage tracers has led to precise early gastrula mesoderm fate maps. It is now clear that there are no sharp boundaries between germ layers at the onset of gastrulation but rather diffuse transition zones. The coordination of cell movements during gastrulation is closely related to the establishment of dorsoventral polarity. Ventralization by U.V. irradiation or dorsalization by lithium treatment modifies the capacity for autonomous migration on the fibronectin coated substratum of marginal zone cells accordingly. It is now firmly established that mesodermal cells need to adhere to a fibrillar extracellular matrix (ECM) to undergo migration during gastrulation. Extracellular fibrils contain laminin and fibronectin (FN). Interaction of cells with ECM involves receptors of the beta 1 integrin family. A Pleurodeles homolog of the alpha v integrin subunit has been recently identified. Protein alpha v expression is restricted to the surface of mesodermal cells during gastrulation. Integrin-mediated interactions of cells with FN are essential for ECM assembly and mesodermal cell migration. Intracellular injection of antibodies to the cytoplasmic domain of beta 1 into early cleavage embryos causes inhibition of FN fibril formation. Intrablastocoelic injections of several probes including antibodies to FN or integrin alpha 5 beta 1, competitive peptides to the major cell binding site of FN or the antiadhesive protein tenascin all block mesodermal cell migration. This results in a complete arrest of gastrulation indicating that mesodermal cell migration is a major driving force in urodele gastrulation. It is now possible to approach the role of fibroblast growth factor (FGF) during cell interactions taking place in urodele embryos. Four different FGF receptors (FGFR) have been cloned in Pleurodeles. Each of them has a unique mRNA expression pattern. FGFR-1, FGFR-3, and the variant of FGFR-2 containing the IIIb exon are maternally expressed and might be involved in mesodermal induction. During gastrulation, FGFR-3 and FGFR-4 have a restricted pattern of expression, whereas FGFR-1 mRNA is nearly uniformly distributed. Splicing variants FGFR-2IIIb and FGFR-2IIIc have exclusive expression patterns during neurulation. IIIb is expressed in epidermis and IIIc in neural tissue, suggesting a function in the differentiation of ectodermal derivatives.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell migration
20
cell interactions
12
mesodermal cell
12
cell
11
gastrulation
8
interactions place
8
mesodermal cells
8
migration
7
mesodermal
6
cells
5

Similar Publications

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

Investigating Cell-Induced Mixing Dynamics in Microfluidic Droplets Using the Lattice Boltzmann Method.

Langmuir

January 2025

CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.

This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!