In isovaleric acidemia (IVA), accumulated isovaleryl-CoA in the mitochondrion induces variable metabolic disturbances. To remove intramitochondrial isovaleryl groups, glycine therapy has been advocated primarily. On the other hand, secondary carnitine deficiency has been documented in this disorder and carnitine supplementation alone has been reported to be effective. In the present study, we administered carnitine and glycine to patients with IVA, and investigated serum carnitine and urinary excretion of total and free carnitine, acylcarnitine profile (i.e., isovalerylcarnitine and acetylcarnitine), and isovalerylglycine. By adding carnitine to glycine supplementation, more isovalerylglycine, not only isovalerylcarnitine, was excreted in the urine. Acetylcarnitine was detected in the urine only when sufficient carnitine was supplemented. We concluded that combined therapy of glycine and carnitine is more effective and safer to eliminate isovaleryl-CoA in IVA than conventional therapy using either glycine or carnitine. Urinary acetylcarnitine concentration might be a good marker indicating the optimal dose of L-carnitine supplementation.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.179.101DOI Listing

Publication Analysis

Top Keywords

carnitine
11
isovaleric acidemia
8
carnitine glycine
8
carnitine urinary
8
therapy glycine
8
glycine carnitine
8
glycine
6
carnitine administration
4
administration glycine
4
glycine metabolism
4

Similar Publications

L-Carnitine is widely recognized for its involvement in lipid metabolism, but its effects on muscle quality and gut health in carp have not been well studied. The research aimed to investigate how L-carnitine influences muscle quality and intestinal health in high-fat-fed carp. The study was separated into four groups that received either the standard diet, a high-fat diet (HFD), or a HFD supplemented with 500 mg/kg L-carnitine (LLC), or a HFD supplemented with 1000 mg/kg L-carnitine (HLC) for 56 days.

View Article and Find Full Text PDF

Metabolome and RNA-seq reveal discrepant metabolism and secretory metabolism profile in skeletal muscle between obese and lean pigs at different ages.

Sci China Life Sci

January 2025

Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.

Metabolites and metabolism-related gene expression profiles in skeletal muscle change dramatically under obesity, aging and metabolic disease. Since obese and lean pigs are ideal models for metabolic research. Here, we compared metabolome and transcriptome of Longissimus dorsi (LD) muscle between Taoyuan black (TB, obese) and Duroc (lean) pigs at different ages.

View Article and Find Full Text PDF

Context: When clinically stable, patients with A-β+ Ketosis-Prone Diabetes (KPD) manifest unique markers of amino acid metabolism. Biomarkers differentiating KPD from type 1 (T1D) and type 2 diabetes (T2D) during hyperglycemic crises would accelerate diagnosis and management.

Objective: Compare serum metabolomics of KPD, T1D and T2D patients during hyperglycemic crises, and utilize Classification and Regression Tree (CART) modeling to distinguish these forms of diabetes.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD).

Methods: Mouse models with high-fat diet (HFD) feeding for 16 weeks (=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting.

View Article and Find Full Text PDF

Alcohol promotes CPT1A-induced lipid metabolism disorder to sentinel-regulate acute pancreatitis.

Eur J Med Res

January 2025

Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Street, Nanchong, 637001, Sichuan, China.

Background And Aims: Previous studies have confirmed that alcohol can increase the sensitivity of the pancreas to stressors and exacerbate the severity of pancreatitis when excessive alcohol intake is combined with other causes. In the current work, this study attempted to explore how does alcohol regulate cerulein-induced acute pancreatitis, especially before inflammation occurs.

Methods: Proteomics was performed to analyze the differentially expressed proteins in pancreatic tissues from a rat model of pancreatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!