We have used a broad range of spectroscopic and viscometric techniques to demonstrate that the complexation of a cytotoxic, topoisomerase I-poisoning terbenzimidazole (5PTB) with the poly(dA).poly(dT) duplex exhibits properties characteristic of both intercalation and minor groove binding. Our results reveal the following features: (i) Optical melting profiles reveal that 5PTB binding enhances the thermal stability of the poly(dA).poly(dT) duplex; (ii) Fluorescence-detected 5PTB binding to the poly(dA).poly(dT) duplex reveals four apparent "site sizes," ranging from 1 to 13 base pairs (bp) per bound drug; (iii) Flow linear dichroism data suggest conformational heterogeneity among the poly(dA).poly(dT)-bound 5PTB molecules, with substantial contributions from drug molecules bound in the minor groove; (iv) Fluorescence resonance energy transfer data reveal properties characteristic of a significant contribution from an intercalative mode of binding; (v) Viscometric, fluorescence quenching, and netropsin competition data are consistent with 5PTB binding to poly(dA).poly(dT) by "mixed" modes, which are operationally defined as single or multiple binding populations that individually and/or collectively express both intercalative and minor groove binding properties. We comment on a potential correlation between drugs that exhibit such "mixed" mode binding motifs and those that express antineoplastic activity through inhibition of topoisomerase I.

Download full-text PDF

Source

Publication Analysis

Top Keywords

minor groove
16
groove binding
12
polydapolydt duplex
12
5ptb binding
12
binding
10
topoisomerase i-poisoning
8
i-poisoning terbenzimidazole
8
intercalative minor
8
binding properties
8
properties characteristic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!