A new quantitative assay for the study of tumour cell invasion in vitro is described. Employing the novel fluorescent dye YO-PRO-1, cells that penetrate Matrigel-coated transwells are counted on the basis of dye-bound cellular nucleic acid content. Following transmigration, the cells in the lower compartments are lysed by freezing in water. After a brief incubation with YO-PRO-1, nucleic acid or DNA content is measured as fluorescence intensity in 96-well microplates and quantitated by a cell- or DNA-calibration curve. Using standard curves, a linear relationship between fluorescence intensity and cell number was found in the range tested (from 100 to 80 000 cells). The mean relative intra- and inter-assay variability of the cell quantitation in this range was 3.5 and 4.2%, respectively. When applied to Matrigel invasion studies, as few as 400 cells could be counted. The quantitation could be performed within 3 h. HCT 116, MDA MB 231 and HT 29 cells were investigated as examples of tumour cells with different invasive abilities in the 48-h Matrigel invasion assay. Using YO-PRO-1, 6.5 +/- 0.6% invasive HCT 116 cells and 52.6 +/- 4.5% MDA MB 231 cells (percentage of the inoculated cell population) were measured. HT 29 cells were practically non-invasive. These results were confirmed by visual scoring of DAPI-stained nuclei. In conclusion, the main advantages of the assay are its sensitive, reproducible and rapid quantitation of tumour cell invasion in vitro and the applicability to extended sample numbers by measuring in 96-well microplates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00128961DOI Listing

Publication Analysis

Top Keywords

tumour cell
12
cell invasion
12
cells
9
assay yo-pro-1
8
invasion vitro
8
nucleic acid
8
fluorescence intensity
8
96-well microplates
8
matrigel invasion
8
hct 116
8

Similar Publications

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.

Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.

View Article and Find Full Text PDF

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!