A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. | LitMetric

For survival, pathogenic organisms such as Candida albicans must possess an efficient mechanism for acquiring iron in the iron-restricted environment of the human body. C. albicans can use iron from a variety of sources found within the host. However, it is not clear how biologically active ferrous iron is obtained from these sources. One strategy adopted by some organisms is to reduce iron extracellularly and then specifically transport the ferrous iron into the cell. We have shown that clinical isolates of C. albicans do have a cell-associated ferric-reductase activity. The determination of ferric-reductase activity of cells growing exponentially in either low- or high-iron media over a period of time indicated that C. albicans reductase activity is induced when in low-iron conditions. Moreover, we have demonstrated that C. albicans reductase activity is also regulated in response to the growth phase of the culture, with induction occurring upon exit from stationary phase and maximal levels being reached in early exponential stage irrespective of the iron content of the medium. These results suggest that C. albicans reductase activity is regulated in a very similar manner to the Saccharomyces cerevisiae ferric-reductase. Iron reduction and uptake in S. cerevisiae are closely connected to copper reduction, and possibly copper uptake. In this report we show that iron and copper reduction also appear to be linked in C. albicans. The ferric-reductase activity is negatively regulated by copper. Moreover, quantitative cupric-reductase assays indicated that C. albicans is capable of reducing copper and that this cupric-reductase activity is negatively regulated by both iron and copper. This is the first report that C. albicans has an iron- and copper-mediated ferri-reductase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1099/13500872-142-3-485DOI Listing

Publication Analysis

Top Keywords

ferric-reductase activity
16
activity regulated
12
iron copper
12
albicans reductase
12
reductase activity
12
iron
10
activity
9
albicans
9
candida albicans
8
albicans cell-associated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!