In this study a possible role of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) in altering the access of corticosteroids to their receptors in the hippocampus is investigated. In vitro, oxidation of corticosterone to 11-dehydrocorticosterone (11-DHC) was demonstrated in hippocampal homogenates. Glycyrrhetinic acid (GE) and carbenoxolone (CBX) were potent inhibitors of 11 beta-HSD activity and did not display affinity for mineralocorticoid (MRs) nor glucocorticoid receptors (GRs). Intracerebroventricular injection of CBX in vivo (ED50 approximately 30 micrograms) decreased oxidative activity in hippocampal homogenates, as demonstrated in vitro. In vitro, in hippocampal slices, cell nuclear retention of tritiated corticosterone, but not aldosterone, was markedly enhanced in the presence of GE, which at a concentration of 20 nM was found to inhibit 11 beta-HSD activity by about 50% in the intact cell preparation. In contrast to the effect on in vitro cell nuclear uptake, in vivo autoradiography revealed that retention of corticosterone in the hippocampal cell nuclei was not affected after intracerebroventricular treatment with CBX. We conclude that hippocampal 11 beta-HSD activity does not alter binding of low amounts of corticosterone to MRs in vivo, but we cannot exclude that the enzyme may modulate access to corticosteroid receptors under certain circumstances.
Download full-text PDF |
Source |
---|
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The goal of the TREAT-AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer's disease (AD). Genome-wide association studies, whole genome sequencing, and gene-expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sanford burnham prebys medical discovery institute, San Diego, CA, USA.
Background: A pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid-beta peptide (Aß). Potential treatments targeting Aß production such as γ-secretase inhibitors have had limited success. A promising alternative approach involves addressing early synaptic dysfunction by modulating molecules like striatal-enriched protein tyrosine phosphatase (STEP), whose levels and activity are upregulated by Aß.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Albert Einstein College of Medicine, Bronx, NY, United States.
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.
Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!