Although nitric oxide (NO) has a well-established role in regulating renal function in the adult, recent studies point to perhaps an even more critical role for NO in maintaining basal renal blood flow (RBF) and glomerular filtration rate (GFR) in the developing kidney. The immature kidney has enhanced renal hemodynamic and functional responses to stimulation and inhibition of NO synthesis when compared with the adult, and these increased responses are not mediated by prostaglandins. Increased intrarenal activity of NO in the developing kidney counter-regulates the highly activated renin angiotensin system by modulating the angiotensin II-mediated vasoconstriction of the developing renal vasculature, the angiotensin II effects on GFR, as well as renin release. Localization studies demonstrate that NO acts on neonatal RBF and stabilization of GFR through an intrarenal distribution of the synthesizing enzyme, nitric oxide synthase, that is different from that of the adult. The developing kidney is dependent on NO to maintain RBF and GFR during periods of hypoxemia, protecting against renal injury, such as acute renal failure. In summary, NO is vital in the developing kidney to maintain normal physiological function and to protect the immature kidney during pathophysiological stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004670050157 | DOI Listing |
BMC Pregnancy Childbirth
January 2025
Department of Intensive Care Medicine, Army Medical Center of PLA, No. 10 Changjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
Background: Pregnancy-associated atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by uncontrolled activation of the complement system during pregnancy or the postpartum period. In the intensive care unit, aHUS must be differentiated from sepsis-related multiple organ dysfunction, thrombotic thrombocytopenic purpura (TTP), hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome. Early recognition of aHUS is critical for effective treatment and improved prognosis.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Nephrology-Dialysis-Transplantation, University of Liège, CHU Sart Tilman, Liège, Belgium.
Background: Creatinine-based estimated glomerular filtration rate (eGFR) equations are widely used in clinical practice but exhibit inherent limitations. On the other side, measuring GFR is time consuming and not available in routine clinical practice. We developed and validated machine learning models to assess the trustworthiness (i.
View Article and Find Full Text PDFBMC Med Res Methodol
January 2025
Clifton Insight, Bristol, UK.
Background: Population-adjusted indirect comparison using parametric Simulated Treatment Comparison (STC) has had limited application to survival outcomes in unanchored settings. Matching-Adjusted Indirect Comparison (MAIC) is commonly used but does not account for violation of proportional hazards or enable extrapolations of survival. We developed and applied a novel methodology for STC in unanchored settings.
View Article and Find Full Text PDFNat Rev Nephrol
January 2025
New York University Grossman School of Medicine, New York, NY, USA.
The timely and rational institution of therapy is a key step towards reducing the global burden of chronic kidney disease (CKD). CKD is a heterogeneous entity with varied aetiologies and diverse trajectories, which include risk of kidney failure but also cardiovascular events and death. Developments in the past decade include substantial progress in CKD risk prediction, driven in part by the accumulation of electronic health records data.
View Article and Find Full Text PDFLab Anim (NY)
January 2025
Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
This Review evaluates various mouse and rat models of chronic kidney disease (CKD) that result from repeated low-dose cisplatin (RLDC) treatment while also discussing ethical considerations on the topic. Cisplatin can cause nephrotoxicity, and high doses of cisplatin can cause acute kidney injury. The RLDC regimen has been used in the treatment of solid organ cancers and has shown efficacy in reducing the occurrence of acute kidney injury in patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!