Threatening stimuli may trigger abnormal reaction patterns in animals and infants. We investigated whether chronic intrauterine stress influenced these reactions. The autonomic defense response to cold and noise in 21 preterm newborns who had suffered from chronic intrauterine stress, such as maternal smoking, maternal hypertension, and intrauterine growth retardation (STR-group) was compared with the response in 30 preterm newborns without such condition (C-group). An ice cube was applied to the forehead and a 90 dB bleeptone was presented to the ears. After the cold test the heart rate, systolic, diastolic, and mean blood pressure increased in both groups, but to a lesser extent in the STR-group: the heart rate increased more at 2 minutes in the C-group (p = 0.009), and the systolic blood pressure was higher in the C-group at 30 seconds (p = 0.007). The respiratory rate decreased in both groups. After the auditory stimulus, no significant difference in response between the two groups was seen for any of the parameters. The number of arousals between the two groups was similar for both tests; they uniformly resulted in increased heart and respiratory rates. The classic passive defense response was not observed in either group of preterm newborns. The observed reaction could be defined as a combination of a sympathetic, active fight-or-flight reaction and a parasympathetic passive freezing, or paralysis, reaction. The latter was less pronounced in the C-group. This may point to a change in the maturation of the autonomic nervous system after chronic intrauterine stress. It is speculated that this could make these infants more vulnerable in stressful situations.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2007-994342DOI Listing

Publication Analysis

Top Keywords

defense response
12
chronic intrauterine
12
intrauterine stress
12
preterm newborns
12
response cold
8
cold noise
8
noise preterm
8
heart rate
8
blood pressure
8
response
5

Similar Publications

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.

View Article and Find Full Text PDF

We report on a fatal case of invasive fungal rhinosinusitis with after lung transplantation. After endoscopic treatment and adjuvant medical therapy with isavuconazole, caspofungin and an investigational antifungal drug, there was a good clinical response with absence of endoscopic and radiographic disease. However, the patient developed disease recurrence, with signs of intracranial involvement on MRI, for which urgent endoscopic sinus surgery was performed and isavuconazole was restarted.

View Article and Find Full Text PDF

We immunized three groups of Mojave desert tortoises (Gopherus agassizii): a group immunized twice, a group immunized once, and a group sham-immunized. We used the antigen, ovalbumin (OVA), with Freund's adjuvant to elicit antibody responses similar to those induced by extracellular bacteria. All tortoises have relatively high levels of B1 lymphocytes and natural antibodies (NAbs), and the goal of this study was to quantify B2 lymphocyte activity (antibody production and potential proliferation) that occurs in primary and secondary immunizations against this constitutive, first line of humoral defense.

View Article and Find Full Text PDF

Oligodendrocytes in Alzheimer's disease pathophysiology.

Nat Neurosci

January 2025

Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.

Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!