Flow-induced changes in vessel caliber tend to restore baseline wall shear stress (WSS) and have been reported to be endothelium-dependent. To investigate the role of endothelium-derived nitric oxide (NO) in the adaptive increase in artery diameter in response to a chronic increase in blood flow, an arteriovenous fistula was constructed between the left common carotid artery (CCA) and the external jugular vein in 22 New Zealand White rabbits, and NO synthesis was inhibited in 14 animals by long-term administration of NG-nitro-L-arginine-methyl ester (L-NAME) in drinking water given for 4 weeks. The remaining 8 animals served as controls. Mean arterial blood pressure was not significantly altered by L-NAME treatment (91 +/- 2 in control versus 98 +/- 3 mm Hg in L-NAME-treated rabbits). Blood flow significantly increased in the left CCA in both groups but was lower in L-NAME-treated than control animals (106.1 +/- 10.7 versus 196.2 +/- 32.3 mL/min, P < .003). The diameter of the flow-loaded left CCA also increased significantly in both groups compared with the right CCA (2.15 +/- 0.12 and 2.54 +/- 0.1 mm, respectively, P < .02), but the increase was less in the L-NAME-treated than the control group (3.24 +/- 0.09 and 4.64 +/- 0.17 mm, respectively, P < .0001). The diameter of the anastomosed veins was also increased but to a much lesser degree in L-NAME-treated animals than in controls (4.14 +/- 0.29 versus 7.94 +/- 0.51 mm, P < .0001). As a result of artery enlargement, WSS was normalized in the flow-loaded left CCA of the control group (8.87 +/- 0.77 dynes/cm2) regardless of blood flow values. In L-NAME-treated animals, however, WSS was only partially regulated, the mean value being significantly increased (18.7 +/- 2.2 dynes/cm2, P < .006). Moreover, a highly significant positive correlation between WSS and blood flow was obtained in L-NAME-treated animals (r = .84, P < .0001). We also found remodeling of the artery wall, with a larger increase in the medial cross-sectional area associated with an increased number of smooth muscle cells, in the control group compared with the L-NAME-treated group (0.75 +/- 0.09 versus 0.49 +/- 0.04 mm2 and 4504 +/- 722 versus 2717 +/- 282 cells/mm2, P < .03). We conclude that NO plays a role in the increase of vessel caliber in response to chronic increase in blood flow. As yet unidentified additional metabolic processes appear to be necessary for a complete regulatory response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.16.10.1256 | DOI Listing |
Acta Radiol
January 2025
Department of Radiology & Institute of Rehabilitation and Development of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China.
Hyperperfusion is related to vessel recanalization, tissue reperfusion, and collateral circulation. To determine the prognostic impact of hyperperfusion after an acute ischemic stroke (AIS) identified by arterial spin labeling (ASL) cerebral blood flow. Studies published in PubMed, Embase, and Cochrane Library databases were searched.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).
Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Post-stroke early activation of neutrophils contributes to intensive neuroinflammation and worsens disease outcomes. Other pre-existing patient conditions can modify the extent of their activation during disease, especially hypercholesterolemia. However, whether and how increased circulating cholesterol amounts can change neutrophil activation responses very early after stroke has not been studied.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland.
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!