The present study investigates the ability of the pharmacologic activation of protein kinase C (PKC) to modulate amyloid precursor protein (APP) secretion in human skin fibroblasts from patients affected by Down's syndrome (DS). We assessed DS subjects at the Hospital Institute of Sospiro, Cremona, and at the Alzheimer's Disease Unit of the Sacred Heart Hospital in Brescia, and we subdivided them into nondemented (NDS) and demented (DDS) patients. All DS patients were trisomy 21 karyotype. DS fibroblasts had an increased content of APP immunoreactive material as revealed by immunocytochemistry analysis. The basal secretion of soluble APP was higher (+94.6%) in Down's cells with respect to controls. The observation on the fibroblasts prepared from DS is consistent with these patients' possessing an extra copy of the APP gene (mapped on chromosome 21) leading to increased APP expression. Phorbol-12,13-dibutyrate (PdBu, 9 to 150 nM) treatment promoted a dose-dependent increase of secreted APP in the conditioned medium of control fibroblasts. The peak response (+102.2%) was attained using 150 nM PdBu. In Down's fibroblasts, PdBu stimulated APP secretion already maximally at low concentrations (9 nM), but the peak response, due to the higher basal release, was lower on a percentage basis (+16.4%) than in control fibroblasts. The results indicate that in Down's fibroblasts the mechanisms controlling APP release are at least quantitatively altered. In addition, these results suggest caution when using information obtained from Down's patients to model Alzheimer's disease biochemical defects.

Download full-text PDF

Source
http://dx.doi.org/10.1212/wnl.47.4.1069DOI Listing

Publication Analysis

Top Keywords

fibroblasts
8
fibroblasts patients
8
patients down's
8
down's syndrome
8
amyloid precursor
8
precursor protein
8
protein kinase
8
app
8
app secretion
8
alzheimer's disease
8

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants.

View Article and Find Full Text PDF

The role of laminins in cancer pathobiology: a comprehensive review.

J Transl Med

January 2025

Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.

View Article and Find Full Text PDF

Background: Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!