Lamotrigine, carbamazepine and oxcarbazepine inhibit veratrine-induced neurotransmitter release from rat brain slices in concentrations corresponding to those reached in plasma or brain in experimental animals or humans after anticonvulsant doses, presumably due to their sodium channel blocking properties. Microdialysis measurements of extracellular glutamate and aspartate were carried out in conscious rats in order to investigate whether corresponding effects occur in vivo Veratridine (10 microM) was applied via the perfusion medium to the cortex and the corpus striatum in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (1 mM in perfusion medium). Maximally effective anticonvulsant doses of carbamazepine (30 mg/kg), oxcarbazepine (60 mg/kg) and lamotrigine (15 mg/kg) were given orally. The uptake inhibitor increased extracellular glutamate and aspartate about 2-fold in striatum and about 7-fold and 3-fold, respectively, in cortex. Veratridine caused a further 2-3-fold increase in extracellular glutamate in striatum and cortex, respectively, but its effect on extracellular aspartate was less marked in both areas. None of the anticonvulsant compounds affected the veratridine-induced increases in extracellular glutamate or aspartate in the striatum which were, however, markedly inhibited by tetrodotoxin (1 microM) and thus are sensitive to sodium channel blockade. In the cortex the same drugs at the same doses did cause about 50% inhibition of the veratridine-induced increase in extracellular glutamate. Carbamazepine and to a lesser extent lamotrigine, but not oxcarbazepine, also inhibited the veratridine-induced increase in extracellular aspartate in the cortex. Although our results might seem to support the view that inhibition of glutamate and aspartate release is responsible for the anticonvulsant effects of lamotrigine, carbamazepine and oxcarbazepine, two complementary findings argue against this interpretation. First, as previously shown, inhibition of electrically induced released of glutamate requires 5 to 7 times higher concentrations of these compounds than release elicited by veratrine. Second, the present study indicates that doses totally suppressing convulsions caused no inhibition in the striatum and at best a 50% inhibition in the brain cortex. From this we conclude that the doses used here, although to some extent effective against veratridine, did not suppress the release of GLU and ASP elicited by the normal ongoing electrical activity of the glutamatergic and aspartatergic neurons and that the mechanism of the suppression of convulsions must be sought elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00178716DOI Listing

Publication Analysis

Top Keywords

extracellular glutamate
24
increase extracellular
16
glutamate aspartate
16
carbamazepine oxcarbazepine
12
glutamate
9
extracellular
8
lamotrigine carbamazepine
8
anticonvulsant doses
8
sodium channel
8
perfusion medium
8

Similar Publications

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

Nuclear calcium signaling in D1 receptor-expressing neurons of the nucleus accumbens regulates molecular, cellular and behavioral adaptations to cocaine.

Biol Psychiatry

January 2025

Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:

Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).

View Article and Find Full Text PDF

Nrf2 Regulates Basal Glutathione Production in Astrocytes.

Int J Mol Sci

January 2025

Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.

Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!