Targeting hepatitis B therapy to the liver. Clinical pharmacokinetic considerations.

Clin Pharmacokinet

Division of Biopharmaceutics, Leiden-Amsterdam Center for Drug Research, University of Leiden, Sylvius Laboratories, The Netherlands.

Published: August 1996

The hepatitis B virus (HBV) is the world's most important chronic virus infection. The immunomodulator interferon-alpha (IFN alpha) is the only clinically applied drug available, despite its low response rate (approximately 30%) even in highly selected chronic carriers. Antiviral nucleoside analogues have proven to be potent inhibitors of viral replication in vitro, but their significant adverse effects which are, at least partially, due to their nonspecific body distribution, have forced the cessation of their clinical development in the past. For example, vidarabine causes severe neuromuscular toxicity, and fialuridine has caused fatal cases of liver and kidney failure in a recent clinical trial. Furthermore, the potential clinical application of (modified) antisense oligodeoxynucleotides, which are very specific inhibitors of viral replication, is hampered by their nonspecific body distribution, instability in serum and poor cell penetration. As infection and replication of HBV mainly occur in liver parenchymal cells, selective targeting of antiviral nucleoside analogues as well as antisense oligodeoxynucleotides to the liver would theoretically improve therapeutic efficacy. At present, conjugates of vidarabine and neoglycoproteins have entered clinical trials, and initial data suggest that therapeutic concentrations are achieved at lower dosages with minor adverse effects. These data have stimulated preclinical research on other liver-specific drug carriers for the selective delivery of HBV-active drugs such as glycosylated polymers and neolipoproteins: these approaches are outlined in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.2165/00003088-199631020-00005DOI Listing

Publication Analysis

Top Keywords

antiviral nucleoside
8
nucleoside analogues
8
inhibitors viral
8
viral replication
8
adverse effects
8
nonspecific body
8
body distribution
8
antisense oligodeoxynucleotides
8
clinical
5
targeting hepatitis
4

Similar Publications

Exploring using HBsAg to predict interferon treatment course to achieve clinical cure in chronic hepatitis B patients: a clinical study.

Front Immunol

January 2025

Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China.

Objective: Although pegylated interferon α-2b (PEG-IFN α-2b) therapy for chronic hepatitis B has received increasing attention, determining the optimal treatment course remains challenging. This research aimed to develop an efficient model for predicting interferon (IFN) treatment course.

Methods: Patients with chronic hepatitis B, undergoing PEG-IFN α-2b monotherapy or combined with NAs (Nucleoside Analogs), were recruited from January 2018 to December 2023 at Tianjin Third Central Hospital.

View Article and Find Full Text PDF

Nucleoside derivatives having a 4-substituent show promise as potential antiviral agents as well as nucleoside units for constructing nucleic acid medicines. To develop new nucleosides, it is crucial to achieve feasible access to the intended derivatives, encompassing both enantiomers. Toward this end, we started synthesizing an achiral 4-hydroxymethyldihydrofuran as a sugar precursor, which we subjected to the oxidative glycosylation reaction using hypervalent iodine.

View Article and Find Full Text PDF

Nucleoside antiviral agents with atypical structures and new targets.

Bioorg Med Chem Lett

January 2025

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China. Electronic address:

Nucleoside analogs (NAs), as antiviral drugs, play a significant role in clinical medicine, constituting approximately 50 % of all antiviral therapies in current use. Nucleoside inhibitors function by mimicking the structure of natural nucleosides, integrating themselves into viral genetic material during replication, and subsequently inhibiting the virus's ability to reproduce. They are used to treat a variety of viral infections, including herpes simplex, hepatitis B, and acquired immunodeficiency syndrome (AIDS).

View Article and Find Full Text PDF

Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.

View Article and Find Full Text PDF

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!