Comparisons of the genetic and cytogenetic maps of three sibling species of Drosophila reveal marked differences in the frequency and cumulative distribution of crossovers during meiosis. The maps for two of these species, Drosophila melanogaster and D. simulans, have previously been described, while this report presents new map data for D. mauritiana, obtained using a set of P element markers. A genetic map covering nearly the entire genome was constructed by estimating the recombination fraction for each pair of adjacent inserts. The P-based genetic map of mauritiana is approximately 1.8 times longer than the standard melanogaster map. It appears that mauritiana has higher recombination along the entire length of each chromosome, but the difference is greates in centromere-proximal regions of the autosomes. The mauritiana autosomes show little or no centromeric recombinational suppression, a characteristic that is prominent in melanogaster. D. simulans appears to be intermediate both in terms of total map length and intensity of the autosomal centromeric effect. These interspecific differences in recombination have important evolutionary implications for DNA sequence organization and variability. In particular, mauritiana is expected to differ from melanogaster in patterns and amounts of sequence variation and transposon insertions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1206984 | PMC |
http://dx.doi.org/10.1093/genetics/142.2.507 | DOI Listing |
Sci Adv
January 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.
Environ Microbiol Rep
February 2025
Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy.
Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.
View Article and Find Full Text PDFbioRxiv
January 2025
University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA.
The order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, , and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly (Phoridae) has been used in evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a chromosome-level assembly and annotation of and transcriptomes of 9 embryonic and 4 postembryonic stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!