[Water disinfection: comparative activities of ozone and chlorine on a wide spectrum of bacteria].

Rev Argent Microbiol

Departamento de Sanidad, Nutrición, Bromatología, Universidad de Buenos Aires, Argentina.

Published: December 1996

Ozone and chlorine are agents that disinfect by destroying, neutralizing or inhibiting the growth of pathogenic microorganisms. The treatment of drinking water with ozone has shown to be more efficient against spores of Bacillus subtilis. It was observed that the ozone already in dose of 0.35 mg/l produced the reduction of at least 5 log in populations of approximately 1 x 10(6) cells/ml of Escherichia coli, Vibrio cholerae, Salmonella typhi, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Listeria monocytogenes and Staphylococcus aureus. With a dose of 0.50 mg/l of chlorine, the reduction was much smaller for the tested microorganisms (except Vibrio cholerae), while the effect of 2 mg/l of chlorine was similar to the ozone treatment. For spores of Bacillus subtilis, the reduction observed with ozone concentrations of 0.35 and 0.70 mg/l was of almost 3 log, while no considerable effect was obtained with chlorine in the tested conditions. Our results have shown that both disinfectans were consumed during the treatment period, probably because of the own water demand and the added bacterial mass.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ozone chlorine
8
spores bacillus
8
bacillus subtilis
8
observed ozone
8
vibrio cholerae
8
mg/l chlorine
8
ozone
6
chlorine
5
[water disinfection
4
disinfection comparative
4

Similar Publications

Fungal contamination in drinking water has garnered considerable attention over the past few decades, especially considering the detrimental consequences of pathogenic fungal species on both human and animal health. The formation of biofilms by certain species is a considerable factor contributing to the emergence of severe fungal infections. This research was designed to isolate and identify fungi, particularly those capable of forming biofilms from 150 samples of drinking water sourced from various locations.

View Article and Find Full Text PDF

In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.

View Article and Find Full Text PDF

During use of sodium hypochlorite bleach, gas-phase hypochlorous acid (HOCl) and chlorine (Cl) are released, which can react with organic compounds present in indoor air. Reactivity between HOCl/Cl and limonene, a common constituent of indoor air, has been observed. The purpose of this study was to characterize the chemical species generated from gas-phase reactions between HOCl/Cl and limonene.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.

View Article and Find Full Text PDF

Quantification and source apportionment of atmospheric oxidation capacity in urban atmosphere by considering reactive chlorine species and photochemical loss of VOCs.

Sci Total Environ

January 2025

Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan 430074, China. Electronic address:

Atmospheric oxidation capacity (AOC) reflects the potential of the atmosphere in converting primary pollutants into secondary aerosols and ozone (O). In this study, the AOC at an urban supersite in Wuhan, a megacity in central China, was quantified by considering the reactions of volatile organic compounds (VOCs) and carbon monoxide (CO) with atmospheric oxidants (OH, NO, O, and Cl). Photochemical loss of total VOCs (13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!