We have investigated the identity and intracellular cascade of responses resulting from activation of the endogenous 5-hydroxytryptamine receptor in the C6 rat glioma cell line. Sequence analysis of reverse transcription-polymerase chain reaction products derived from C6 glioma cell messenger RNA revealed complete homology with a portion of the rat 5-hydroxytryptamine2A receptor. The binding of [3H]ketanserin to cell membranes demonstrated a significant correlation with the 5-hydroxytryptamine2A receptor in rat frontal cortex. On intact cells, 5-hydroxytryptamine stimulated a concentration-dependent increase in phosphatidyl inositide turnover and intracellular [Ca2+] mediated by 5-hydroxytryptamine2A receptors. In whole-cell patch-clamp recordings, 5-hydroxytryptamine induced an outward current mediated predominantly by K+ ions (reversal potential = -80 mV). Using caged molecules containing Ca2+ or inositol 1,4,5-trisphosphate in the patch electrode solution, we found that rapid photolytic release of Ca2+ and particularly inositol 1,4,5-trisphosphate within the cytosol induced an outward current with characteristics similar to those seen after application of 5-hydroxytryptamine. Comparison between differentiated and undifferentiated cells revealed significantly higher receptor density and maximal phosphoinositide response to 5-hydroxytryptamine in undifferentiated cells but the associated rise in [Ca2+]i and activation of an outward current was observed more frequently in differentiated cells. Prolonged exposure of the cells to 5-hydroxytryptamine led to a decrease in all responses and to the down-regulation of receptor number. We conclude that the rat C6 glioma cell expresses a 5-hydroxytryptamine2A receptor identical to that found in rat brain and that stimulation of the receptor in C6 cells leads to the activation of Ca2+ activated K+ channels via phosphoinositide hydrolysis and subsequent rise in cytosolic Ca2+ ion concentration. However, the contrasting effects of differentiation on receptor number and phosphoinositide response to 5-hydroxytryptamine compared to Ca2+ release and conductance change indicate that a complex relationship exists between the component parts of the receptor-activated cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0306-4522(95)00323-bDOI Listing

Publication Analysis

Top Keywords

rat glioma
12
glioma cell
12
5-hydroxytryptamine2a receptor
12
outward current
12
receptor-activated cascade
8
receptor
8
receptor rat
8
cells 5-hydroxytryptamine
8
induced outward
8
ca2+ inositol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!