The known biodegradability of poly[(R)-3-hydroxybutyric acid] (PHB) in certain biological environments had led to its proposed use as a biodegradable, biocompatible polymer. Recently, a new, rapidly biodegradable block copolymer that contains crystalline domains of PHB blocks has been synthesized. During degradation of these polymers, the PHB domains are transformed in a first step into small crystalline particles of short-chain PHB. Therefore, particles of short-chain poly[(R)-3-hydroxybutyric acid] (Mn 2300) (PHB-P), as possible degradation products, are investigated here for their effects on the viability and activation of mouse macrophages (J774), primary rat peritoneal macrophages, and mouse fibroblasts (3T3), and their biodegradation or exocytosis (or both) in these cells. Results obtained in the present study indicate that incubation of macrophages with PHB-P concentrations higher than 10 micrograms/mL were found to cause a significant decrease in the number of attached and viable cells as measured in MTT assay, and significant increase in the production levels of tumor necrosis factor-alpha (TNF-alpha) or nitric oxide (NO). At low concentrations, particles of PHB failed to induce cytotoxic effects or to activate macrophages. In addition, signs of possible biodegradation were seen in macrophages. Fibroblasts showed only limited PHB-P phagocytosis and no signs of any cellular damage or cell activation (production of collagen type I and IV, and fibronectin). Taken collectively, the present data indicate that phagocytosis of PHB-P at high concentrations ( > 10 micrograms/mL) is dose dependent and associated with cell damage in macrophages but not in fibroblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-4636(199604)30:4<429::AID-JBM1>3.0.CO;2-R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!