We have investigated the expression of intermediate filament proteins in the developing mouse retina by immunohistochemistry. Antibodies against alpha-internexin, the three neurofilament subunits (NF-L, NF-M, NF-H), vimentin, and glial fibrillary acidic protein (GFAP) were used to determine the relative expression of these proteins at different post-natal stages of mouse retinal development. alpha-Internexin is widely distributed in the process of amacrine cells, horizontal cells and retinal ganglion cells before post-natal day 5 (P5). At this age, NF-L and NF-M are detected primarily in the processes of horizontal cells and retinal ganglion cells, but are rarely found in amacrine cell processes. After P5, alpha-internexin is found to colocalize with other neuronal intermediate filaments in the cell processes of horizontal and ganglion cells, but its expression is barely detectable in amacrine cells processes. NF-H is not encountered in either the horizontal cell processes or the ganglion nerve fibers until P5. Vimentin is present in all glial cells (astrocytes and Müller cells) and some horizontal cell processes during development, while GFAP is found only in astrocyte processes of the mature retina. The transient presence of alpha-internexin in amacrine cells only in early development suggests that the protein may play a role in the plasticity of neuronal connections in the retina.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-4835(05)80026-0DOI Listing

Publication Analysis

Top Keywords

amacrine cells
16
cell processes
16
ganglion cells
12
cells
11
neuronal intermediate
8
intermediate filament
8
developing mouse
8
mouse retina
8
nf-l nf-m
8
vimentin glial
8

Similar Publications

Purpose: Diabetic retinopathy (DR) is a complication of diabetes and a primary cause of visual impairment amongst working-age individuals. DR is a degenerative condition in which hyperglycaemia results in morphological and functional changes in certain retinal cells. Existing treatments mainly address the advanced stages of the disease, which involve vascular defects or neovascularization.

View Article and Find Full Text PDF

D e h ydro d olichyl d iphosphate s ynthase (DHDDS) is an essential enzyme required for several forms of protein glycosylation in all eukaryotic cells. Surprisingly, three mutant alleles, ( (K42E/K42E), (T206A/K42E), and found in only one patient, (R98W/K42E) have been reported that cause non-syndromic retinitis pigmentosa (RP59), an inherited retinal degeneration (IRD). Because T206A was only observed heterozygously with the K42E allele in RP59 patients, we used CRISPR/CAS9 technology to generate T206A/T206A, and subsequently T206A/K42E alleles in mice to assess the contribution of the T206A allele to the disease phenotype, to model the human disease, and to compare resulting phenotypes to our homozygous K42E mouse model.

View Article and Find Full Text PDF

Introduction: Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterized simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies.

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!