The onset and development of distortion product otoacoustic emissions (DPE) representing cochlear amplifier activity were studied in neonatal hyperthyroid (n = 10) and control (n = 10) rat pups. These were compared to the onset and development of auditory nerve-brainstem evoked responses (ABR) representing overall cochlear function, and to morphological development of the ear. DPEs were recorded at an earlier postnatal age to high (8 kHz) frequencies and progressed to lower (3 kHz) frequencies with age. ABRs to high-intensity clicks were recorded at least 2 days before DPEs, although DPE onset at 8 kHz preceded adult-like ABR thresholds. Both ABR and DPEs appeared earlier in the hyperthyroid rats. Histological evidence showed earlier morphological development of the ear in these animals. ABR thresholds and DPE amplitudes matured at a slower rate in the experimental group despite their earlier onset. There was no difference in ABR and DPE thresholds between adult hyperthyroid and control rats. However, in the experimental group, DPEs had smaller amplitudes to high (70 dB SPL) and to low (50 dB SPL) stimulus intensities at low frequencies. Hence, despite thyroxine-injected rat pups having earlier onset of auditory structure and function (lower ABR thresholds and earlier functioning active cochlear amplifier), it appeared that neonatal hyperthyroidism affected the later state of the cochlea, such that DPEs, especially to low-frequency stimuli, were depressed during and after maturation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

morphological development
12
development ear
12
abr thresholds
12
onset development
8
representing cochlear
8
cochlear amplifier
8
hyperthyroid control
8
rat pups
8
khz frequencies
8
experimental group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!