Insulin inhibits protein breakdown at the whole body level, but neither the tissues nor the proteolytic pathways on which insulin exerts its antiproteolytic effect are well characterized. We measured the effects of insulin on mRNA levels for cathepsin D and m-calpain (a lysosomal and Ca2(+)-dependent proteinase, respectively) and ubiquitin (a component of ubiquitin-dependent proteolysis) in skeletal muscle, skin, liver, and intestine. We used a 6-h hyperinsulinemic, euglycemic, and hyperaminoacidemic clamp in goats, a species in which insulin markedly inhibited whole body protein breakdown under similar conditions [S. Tesseraud, J. Grizard, E. Debras, I. Papet, Y. Bonnet, G. Bayle, and C. Champredon. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E402-E413, 1993]. Hyperinsulinemia and hyperaminoacidemia had no effect on cathepsin D, m-calpain, and ubiquitin mRNA levels in liver, skin, and jejunum. In contrast, depressed ubiquitin mRNA levels were seen in skeletal muscle without any concomitant reduction in mRNA levels for cathepsin D, m-calpain, and other components of the ubiquitin-dependent proteolytic pathway. The reduced ubiquitin mRNA levels in skeletal muscle may represent a possible mechanism explaining the antiproteolytic effect of insulin in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.1996.271.3.E505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!