A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional importance of the dihydropyridine-sensitive, yet voltage-insensitive store-operated Ca2+ influx of U937 cells. | LitMetric

The Ca2+ current activated by Ca2+ store depletion in non-excitable cells is classically regarded as being dihydropyridine-insensitive, suggesting that store-operated Ca2+ channels (SOCs) are dissimilar to voltage-gated Ca2+ channels (VGCs) of excitable-cells. Here, we demonstrate dihydropyridine-sensitivity for the store-operated Ca2+ influx induced by ATP and thapsigargin (Tg) in the non-excitable U937 cell-line. Ca2+ store depletion by prior treatment of cells with either Tg or ATP, stimulated a Ca2+ entry mechanism that was inhibited by nicardipine, nifedipine, and the specific L-type Ca2+ channel blocker, calciseptine. A functional requirement for this Ca2+ influx mechanism in agonist-induced mitogenesis seemed likely, since nicardipine, a particularly potent inhibitor of store-operated Ca2+ influx in these cells, suppressed ATP- and Tg-stimulated cell proliferation. Depolarisation of cells with KCl, or gramicidin failed to elicit an increase in cytosolic Ca2+, suggesting that while the store-operated Ca2+ influx channel of U937 cells shares pharmacologic properties with the L-type Ca2+ channel, it is voltage-insensitive and therefore may resemble an L-type Ca2+ channel lacking a voltage sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(96)00939-8DOI Listing

Publication Analysis

Top Keywords

store-operated ca2+
20
ca2+ influx
20
ca2+
15
l-type ca2+
12
ca2+ channel
12
u937 cells
8
ca2+ store
8
store depletion
8
suggesting store-operated
8
ca2+ channels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!