The rapid uptake of injected nanoparticles by cells of the mononuclear phagocytes system (MPS) is a major obstacle when a long blood circulation time is needed. Whereas nanoparticles made from PLA and stabilized by surfactants (PLA-F68) are rapidly phagocytized, the rate of phagocytosis is strongly reduced in case of nanoparticles made from a diblock copolymer (PLA-PEO). Because of the role of the complement system in opsonization, this difference of phagocytosis was hypothesized to be related to this system. An important complement consumption was obtained in 5 min in the presence of PLA-F68 particles. In the presence of a higher surface area of PLA-PEO particles possessing a high PEO surface density, the consumption remained very low. When the average PEO surface density was decreased on such particles below a given threshold, a fast and strong complement consumption occurred again. These experimental data support the concept of steric repulsion towards proteins, by surfaces covered with terminally attached PEO chains and emphasize the prime importance of PEO surface density in such an effect. The major, but probably not exclusive, role of complement as an opsonin capable of inducing a fast phagocytosis by MPS should be taken into account concerning the in vitro evaluation of nanoparticles as candidates for a long blood circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0142-9612(95)00322-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute for Theoretical Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany.
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fuzhou University College of Chemical Engineering, College of Chemical Engineering, CHINA.
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:
Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
The dynamically developing field of implantology requires researchers to search for new materials and solutions. In this study, TiNbZr samples were investigated as an alternative for popular, but potentially hazardous TiAl6V4. Samples were etched, sandblasted, subjected to PEO, and covered in AgNP suspension.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH UK. Electronic address:
Recent developments in pharmacogenetics have emphasised the importance of customised medication, driving interest in technologies like FDM 3D-printing for tailored drug delivery. FDM 3D-printing is a promising technique for the on-demand manufacturing of customised oral dosage forms, providing flexibility in terms of shape and size, dose and drug release profiles. This study investigates the fabrication and characterisation of 3D-printed oral dosage forms using PEO as the primary polymer and PEG 6 K as a plasticiser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!