We have studied two mutants carrying large deletions induced in the white gene of Drosophila by the antitumoral drug cisplatin. The breakpoints of the deletions were located by southern analysis and the sequences of the deletion junctions were determined. Two base-pair repeats are associated with the ends of these deletions; one of the repeats is preserved in the new junction after the deletion. DNA sequences such as A-T rich, alternating purine/pyrimidine tracts, polypurine-polypyrimidine tracts and topoisomerase I and II cleavage sites are found near the junctions. These results suggest that illegitimate recombinational processes are involved in the generation of cisplatin-induced large deletions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0027-5107(96)00059-0DOI Listing

Publication Analysis

Top Keywords

large deletions
12
deletions induced
8
induced white
8
white gene
8
gene drosophila
8
antitumoral drug
8
drosophila melanogaster
4
melanogaster antitumoral
4
drug cis-dichlorodiammineplatinumii
4
cis-dichlorodiammineplatinumii influence
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

coordinates the IL-10 inducing activity of .

Microbiol Spectr

January 2025

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

Background: The thin descending limb (DTL) of the loop of Henle is crucial for urine concentration, as it facilitates passive water reabsorption. Despite its importance, little is known about how DTL cells form during kidney development. Single-cell RNA sequencing (scRNA-seq) studies have not definitively identified DTL cells in the developing mouse kidney.

View Article and Find Full Text PDF

Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!