Prevention of erythrocyte dehydration is a potential therapeutic strategy for sickle cell disease. Increasing erythrocyte magnesium (Mg) could inhibit sickle cell dehydration by increasing chloride (CI) and water content and by inhibiting potassium chloride (K-CI) cotransport. In transgenic SAD 1 and (control) C57BL/6 normal mice, we investigated the effect of 2 weeks of diet with either low Mg (6 +/- 2 mg/kg body weight/d) or high Mg (1,000 +/- 20 mg/kg body weight/ d), in comparison with a diet of standard Mg (400 +/- 20 mg/ kg body weight/d). The high-Mg diet increased SAD 1 erythrocyte Mg and K contents and reduced K-CI cotransport activity, mean corpuscular hemoglobin concentration (MCHC), cell density, and reticulocyte count. SAD 1 mice treated with low-Mg diet showed a significant reduction in erythrocyte Mg and K contents and increases in K-CI cotransport, MCHC, cell density, and reticulocyte counts. In SAD 1 mice, hematocrit (Hct) and hemoglobin (Hb) decreased significantly with low Mg diet and increased significantly with high-Mg diet. The C57BL/6 controls showed significant changes only in erythrocyte Mg and K content, and K-CI cotransport activities, similar to those observed in SAD 1 mice. Thus, in the SAD 1 mouse, changes in dietary Mg modulate K-CI cotransport, modify erythrocyte dehydration, and ultimately affect Hb levels.
Download full-text PDF |
Source |
---|
J Hypertens
May 2022
Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan.
Objective: The kidney plays a central role in regulating the salt sensitivity of blood pressure (BP) by governing sodium excretion and reabsorption via renal sodium transporters. We hypothesized that sodium-glucose cotransporter 2 (SGLT2) inhibition and angiotensin II type 1 receptor (AT1R) blockade can synergistically reduce renal sodium reabsorption by beneficially effects on these transporters, leading to lower BP and ameliorating renal and cardiac damage.
Methods And Results: Dahl salt-sensitive rats were treated orally for 8weeks with a normal salt diet (0.
Rev Invest Clin
December 2014
Unidad de Fisiología Molecular. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán.
The K+:Cl- cotransporters or KCCs are membrane proteins that move K+ and Cl- ions across the membrane without changing the transmembrane potential. KCCs belong to the SLC12 (Solute Carrier Family 12) family of electroneutral cation-chloride cotransporters (CCC), and they are secondary active ion transporters because use the established gradients from the primary active transporter through the Na+/K+- ATPase. Although there are nine members identify in this family, up today only seven genes had been characterized.
View Article and Find Full Text PDFCell Physiol Biochem
November 2005
Cell Biophysics Group, Department of Pathology, Wright State University, School of Medicine, Dayton, Ohio 45435, USA.
Sheep K-Cl cotransporter-1(shKCC1) cDNA was cloned from kidney by RT-PCR with an open reading frame of 3258 base pairs exhibiting 92%, 90%, 88% and 87% identity with pig, rabbit and human, rat and mouse KCC1 cDNAs, respectively, encoding an approximately 122 kDa polypeptide of 1086-amino acids. Hydropathy analysis reveals the familiar KCC1 topology with 12 transmembrane domains (TMDs) and the hydrophilic NH2-terminal (NTD) and COOH-terminal (CTD) domains both at the cytoplasmic membrane face. However, shKCC1 has two rather than one large extracellular loops (ECL): ECL3 between TMDs 5 and 6, and ECL6, between TMDs 11 and 12.
View Article and Find Full Text PDFPflugers Arch
October 2004
Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia.
This study elucidates the role of cell volume in contractions of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat aorta. We observed that hyposmotic swelling as well as hyper- and isosmotic shrinkage led to VSMR contractions. Swelling-induced contractions were accompanied by activation of Ca2+ influx and were abolished by nifedipine and verapamil.
View Article and Find Full Text PDFFEBS Lett
September 2000
Department of Physiology, St George's Hospital Medical School, University of London, Cranmer Terrace, UK.
Dimethyl adipimidate (DMA) reduces K+ loss from, and dehydration of, red cells containing haemoglobin S (HbS cells). Three membrane transporters may contribute to these processes: the deoxygenation-induced cation-selective channel (Psickle), the Ca2+-activated K+ channel (or Gardos channel) and the K+-CI- cotransporter (KCC). We show that DMA inhibited all three pathways in deoxygenated HbS cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!