rap-1A, an anti-oncogene-encoded protein, is a ras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32-47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A at ras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure of ras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 A from that of ras-p21. The effector binding domains from residues 32-47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115-126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01886806DOI Listing

Publication Analysis

Top Keywords

three-dimensional structure
12
structure rap-1a
8
p21
8
p21 protein
8
involving residues
8
residues 32-47
8
side chains
8
rap-1a
7
residues
7
structure
6

Similar Publications

H, N, C backbone resonance assignment of human Alkbh7.

Biomol NMR Assign

January 2025

Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.

The Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone H, N, C chemical shift assignment of the full-length human Alkbh7.

View Article and Find Full Text PDF

Confinement-induced Ni-based MOF formed on TiCT MXene support for enhanced capacitive deionization of chromium(VI).

Sci Rep

January 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.

MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.

View Article and Find Full Text PDF

Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching.

Nat Commun

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.

Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.

View Article and Find Full Text PDF

Objective: The purpose of this study was to assess the severity of hemifacial spasm (HFS) through quantitative measures that associated it with neurovascular contact (NVC).

Methods: We enrolled 108 HFS patients (63 severe and 45 mild cases) and implemented a human-in-the-loop approach to develop a quantitative NVC feature package. This process involved using interactive segmentation on three-dimensional volumetric interpolated breath-hold examination (VIBE) MR images to delineate vascular and nerve structures.

View Article and Find Full Text PDF

Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.

Int J Biol Macromol

January 2025

Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China. Electronic address:

Hyaluronic acid (HA)-derived hydrogels signify a noticeable development in biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the foremost causes of death globally, with current therapies frequently impeded by lack of specificity, serious side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, create an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!