In previous studies, we have shown that a traumatic lesion to the hippocampus of adult mice induces the transitory expression of TNF alpha and IL-1 alpha by neurons of different brain areas and also by glial cells at the site of injury. The aim of the present study was to establish whether the expression of TNF alpha and IL-1 alpha is restricted to defined subpopulations, or else is common to most of the central neuronal populations. Using polyclonal anti-GAD 67, anti-TH and monoclonal anti-ChAT, and anti-5-HT antibodies in a double-labeling immunohistochemical procedure in combination with murine anti-TNF alpha and anti-IL-1 alpha polyclonal antibodies, we show that most GABAergic, catecholaminergic, and serotoninergic neurons, and a subgroup of the cholinergic neurons, express these cytokines. Although not immunohistochemically characterized, neurons in some glutamatergic structures such as the hippocampus and the prefrontal cortex also express these cytokines. Thus, we conclude that the capacity of central neurons to express cytokines like TNF alpha and IL-1 alpha in reaction to a brain injury is not restricted to peculiar neuronal subtypes, but could include most of the neuronal populations of the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.490430113DOI Listing

Publication Analysis

Top Keywords

tnf alpha
16
alpha il-1
16
il-1 alpha
16
express cytokines
12
alpha
10
expression tnf
8
neuronal populations
8
neurons express
8
neurons
5
identification topography
4

Similar Publications

Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Protective Effects of Hydrogen Treatment Against High Glucose-Induced Oxidative Stress and Apoptosis via Inhibition of the AGEs/RAGE/NF-κB Signaling Pathway in Skin Cells.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H2), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!