The involvement of various phosphodiesterases (PDEs) in controlling the time-dependent mechanical properties of guinea pig trachealis smooth muscles was determined by using different classes of PDE inhibitors as pharmacological tools. These drugs produced low amplitude and long-lasting dose-dependent relaxations on the resting tone with the following EC50 values: rolipram, 3 nM; indolidan, 0.11 microM; and zaprinast, 0.5 nM and 1 microM. These PDE inhibitors were 50% less active than 1 microM norepinephrine. The effects of the drugs were also tested on carbachol-induced contractions and norepinephrine-evoked relaxations. Zaprinast, but not rolipram nor indolidan, decreased the rate of rise of contraction, thus prolonging the time to reach the plateau by 75% without modifying the magnitude of the responses. Zaprinast and rolipram significantly increased the total length of the norepinephrine effect by 25 and 35%, respectively. Similar results were obtained in a dose-dependent manner on isoproterenol-induced relaxations. In contrast, a higher concentration of indolidan was required to affect the amplitude, duration, and time to peak of isoproterenol- or norepinephrine-induced relaxations. These results indicate that PDE IV (rolipram sensitive) and PDE I, and less likely PDE V (both zaprinast sensitive), are involved in the control of guinea pig airway contractile kinetics, whereas PDE III (indolidan sensitive) is essentially involved in the modulation of the resting tone. Four cytosolic isozymes were identified in bovine airway smooth muscles (ASMs); PDE I (calmodulin-dependent PDE), PDE II (cGMP-stimulated PDE), PDE IV (cAMP-specific and rolipram-sensitive PDE), and PDE V (cGMP-specific and zaprinast-sensitive PDE). Characterization of PDE isoforms present in the microsomal fraction by HPLC showed the presence of PDE IV, PDE V, and to a lesser extent PDE III. However, PDE III was not detected in ASM cytosol. Using newly synthesized radioligands, binding studies confirmed the low level of expression of PDE III and the presence of PDE IV. We conclude that PDE I controls the rate of contraction, whereas PDE V and PDE IV prolong the time of relaxation induced by NE. PDE V would control the ASM responsiveness by regulating the intracellular cGMP concentration, which in turn would both activate PKG and stimulate PDE II (cGS-PDE). Since the various isozymes of PDE are differently involved in the kinetic control of the mechanical events in ASM, they represent physiologically relevant and important pharmacological targets.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y95-243DOI Listing

Publication Analysis

Top Keywords

pde
27
pde pde
24
pde iii
16
contractile kinetics
8
airway smooth
8
guinea pig
8
smooth muscles
8
pde inhibitors
8
resting tone
8
rolipram indolidan
8

Similar Publications

Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A.

Biomed Pharmacother

January 2025

Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:

Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.

View Article and Find Full Text PDF

In the Brain of Phosphodiesterases: Potential Therapeutic Targets for Schizophrenia.

Clin Psychopharmacol Neurosci

February 2025

Department of Mental Health of Enna, Psychiatry Unity, Enna Hospital, Enna, Italy.

Intracellular cyclic nucleotides (cyclic adenosine monophosphate and cyclic guanosine monophosphate) and downstream cellular signal transduction are regulated by phosphodiesterases (PDEs). The neuroplasticity, neurotransmitter pathways, and neuroinflammation-controlling functions of PDEs were demonstrated in numerous in vitro and animal model studies. We comprehensively reviewed the literature regarding the expression of PDEs in various brain regions.

View Article and Find Full Text PDF

Implementing the discontinuous-Galerkin finite element method using graph neural networks with application to diffusion equations.

Neural Netw

December 2024

Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Centre for AI-Physics Modelling, Imperial-X, White City Campus, Imperial College London, W12 7SL, UK.

Machine learning (ML) has benefited from both software and hardware advancements, leading to increasing interest in capitalising on ML throughout academia and industry. There have been efforts in the scientific computing community to leverage this development via implementing conventional partial differential equation (PDE) solvers with machine learning packages, most of which rely on structured spatial discretisation and fast convolution algorithms. However, unstructured meshes are favoured in problems with complex geometries.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.

View Article and Find Full Text PDF

Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting Anti-Osteoporotic Effects.

ACS Med Chem Lett

January 2025

Chemical Research Laboratories, i2i-Labo, Biological Pharmacological Research Laboratories, and Drug Metabolism & Pharma-cokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.

Phosphodiesterases (PDEs) have drawn attention due to their critical roles in physiological and pathological conditions. Many research groups have studied these hydrolytic enzymes to develop new drugs, including apremilast as a PDE4 inhibitor and sildenafil as a PDE5 inhibitor. Targeting PDE7 has also been deemed a rational strategy to ameliorate autoimmune conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!