A gel as an array of channels.

Electrophoresis

Department of Chemistry and Biochemistry, University of California (San Diego), La Jolla 92093-0317, USA.

Published: June 1996

We consider the theory of charged point molecules ('probes') being pulled by an electric field through a two-dimensional net of channels that represents a piece of gel. Associated with the position in the net is a free energy of interaction between the probe and the net; this free energy fluctuates randomly with the position of the probe in the net. The free energy is intended to represent weak interactions between the probe and the gel, such as entropy associated with the restriction of the freedom of motion of the probe by the gel, or electrostatic interactions between the probe and charges fixed to the gel. The free energy can be thought of as a surface with the appearance of a rough, hilly landscape spread over the net; the roughness is measured by the standard deviation of the free-energy distribution. Two variations of the model are examined: (1) the net is assumed to have all channels open, or (2) only channels parallel to the electric field are open and all the cross-connecting channels are closed. Model (1) is more realistic but presents a two-dimensional mathematical problem which can only be solved by slow iteration methods, while model (2) is less realistic but presents a one-dimensional problem that can be reduced to simple quadratures and is easy to solve by numerical integration. In both models the mobility of the probe decreases as the roughness parameter is increased, but the effect is larger in the less realistic model (2) if the same free-energy surface is used in both. The mobility in model (2) is reduced both by high points in the rough surface ('bumps') and by low points ('traps'), while in model (1) only the traps are effective, since the probes can flow around the bumps through the cross channels. The mobility in model (2) can be made to agree with model (1) simply by cutting off the bumps of the surface. Thus the simple model (2) can be used in place of the more realistic model (1) that is more difficult to compute.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.1150170606DOI Listing

Publication Analysis

Top Keywords

free energy
16
net free
12
model
10
electric field
8
probe net
8
interactions probe
8
probe gel
8
model realistic
8
realistic presents
8
realistic model
8

Similar Publications

Phase diagrams and crystallography are standard tools for studying structural phase transitions, whereas acquiring kinetic information at the atomistic level has been considered essential but challenging. The η-to-θ phase transition of alumina is unidirectional in bulk and retains the crystal lattice orientation. We report a rare example of a statistical kinetics study showing that for nanoparticles on a bulk Al(OH) surface, this phase transition occurs nondeterministically through an ergodic equilibrium through the molten state, and the memory of the lattice orientation is lost in this process.

View Article and Find Full Text PDF

Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.

View Article and Find Full Text PDF

Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands.

J Chem Inf Model

January 2025

Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.

Article Synopsis
  • Predicting how well ligands bind to nucleic acids is challenging, which limits the development of small-molecule drugs for diseases like cancer and infections.
  • Recent advancements in computational methods, particularly free-energy perturbation (FEP), have improved predictions for protein-ligand binding affinities, but its effectiveness for nucleic acids was unclear.
  • This study found that using FEP+ software with the OPLS4 force field can accurately predict binding energies for over 100 ligands interacting with DNA/RNA, achieving predictions that closely match experimental data and could aid drug discovery.
View Article and Find Full Text PDF

Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.

View Article and Find Full Text PDF

Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!