AI Article Synopsis

Article Abstract

The maltose-binding protein (MBP) of Escherichia coli is the periplasmic receptor of the maltose transport system. Previous studies have identified amino acid substitutions in an alpha/beta loop of the structure of MBP that are critical for the in vivo folding. To probe genetically the structural role of this surface loop, we generated a library in which the corresponding codons 32 and 33 of malE were mutagenized. The maltose phenotype, which correlates with a biologically active structure of MBP in the periplasm, indicated a considerable variability in the loop residues compatible with a correct in vivo folding pathway of the protein. By the same genetic screens, we characterized loop-variant MBPs associated with a defective periplasmic folding pathway and aggregated into inclusion bodies. Heat-shock induction with production of misfolded loop variants was examined using both lon-lacZ and htrA-lacZ fusions. We found that the extent of formation of inclusion bodies in the periplasm of E. coli, from misfolded loop variant MBPs, correlated with the level of heat-shock response regulated by the alternate heat-shock sigma factor, sigma 24.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1996.0504DOI Listing

Publication Analysis

Top Keywords

maltose-binding protein
12
inclusion bodies
12
structural role
8
heat-shock induction
8
loop variants
8
structure mbp
8
vivo folding
8
folding pathway
8
misfolded loop
8
loop
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!