A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three two-component signal-transduction systems interact for Pho regulation in Bacillus subtilis. | LitMetric

The Pho regulon of Bacillus subtilis is controlled by three two-component signal-transduction systems: PhoP/PhoR, ResD/ResE, and the phosphorelay leading to the phosphorylation of SpoOA. Two of these systems act as positive regulators, while the third is involved in negative regulation of the Pho regulon. Under phosphate-starvation-induction conditions, the response regulator (RR) PhoP, and the histidine protein kinase (HK) PhoR, are involved in the induction of Pho-regulon genes including the phoPR operon and genes encoding the major vegetative alkaline phosphatases, phoA and phoB. ResD (the RR) and ResE (the HK) are positive regulators of both aerobic and anaerobic respiration in B. subtilis. Current data suggest that they are also positive regulators of the Pho regulon, as is the transition-state regulatory protein AbrB. Data presented reveal that ResDE and AbrB are involved in activation of the Pho regulon through separate regulatory pathways. SpoOA approximately P (RR) exerts a negative effect on the Pho regulon through its repression of AbrB, and possibly through repression of ResDE. Both pathways converge to regulate transcription of the phoPR operon.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1996.422952.xDOI Listing

Publication Analysis

Top Keywords

pho regulon
20
positive regulators
12
three two-component
8
two-component signal-transduction
8
signal-transduction systems
8
bacillus subtilis
8
phopr operon
8
pho
6
regulon
5
systems interact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!