We have purified 3'-phosphoadenosine-5'-phosphosulfate:GalCer sulfotransferase [EC 2.8.2.11] from a human renal cancer cell line SMKT-R3 through a combination of affinity chromatographies using galactosylsphingosine, 3',5'-bisphosphoadenosine and heparin as ligands. The purified sulfotransferase showed a specific activity of 1.2 mumol/min/mg, which is 300 times more than the highest activity among the enzyme preparations purified so far from other sources. Homogeneity of the purified sulfotransferase was supported by the facts that the enzyme preparation showed a single protein band with an apparent molecular mass of 54 kDa on reducing SDS-PAGE and that protein bands coincided with the enzyme activity on both native PAGE and nonreducing SDS-PAGE. GalCer was the best acceptor for the purified enzyme. LacCer, GalAAG, and GalDG were also good acceptors. GlcCer, Gg3Cer, Gg4Cer, Gb4Cer, and nLc4Cer did serve as acceptors although the relative activities were low. On the other hand, the enzyme could not act on Gb3Cer, which possesses alpha-galactoside at the nonreducing terminus. Neither galactose nor lactose served as an acceptor. These observations suggest that the sulfotransferase prefers beta-glycoside, especially beta-galactoside, at the nonreducing termini of sugar chains attached to a lipid moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021258DOI Listing

Publication Analysis

Top Keywords

3'-phosphoadenosine-5'-phosphosulfategalcer sulfotransferase
8
human renal
8
renal cancer
8
purified sulfotransferase
8
sulfotransferase
5
purified
5
enzyme
5
purification characterization
4
characterization 3'-phosphoadenosine-5'-phosphosulfategalcer
4
sulfotransferase human
4

Similar Publications

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Risk assessment of chlorophenols (CPs) exposure in vitro:Inhibition of sulfotransferases (SULTs) activity.

Toxicol In Vitro

January 2025

Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China. Electronic address:

Chlorophenols (CPs) are common organic pollutants widely used in many industries. The current study seeks to examine the inhibition of sulfotransferases (SULTs) by CPs. Four SULT isoforms were significantly inhibited by multiply CPs.

View Article and Find Full Text PDF

Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, the capsular polysaccharide (CPS) was obtained from the bacterium KMM 1449, isolated from a marine sediment sample collected along the shore of the Sea of Japan.

View Article and Find Full Text PDF

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with significant morbidity and mortality. Inflammation has been implicated in the pathogenesis of AF, but the causal relationship between specific inflammatory proteins and AF risk is not well established. This study aims to clarify this relationship using a bidirectional two-sample Mendelian Randomization (TSMR) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!