Oligodeoxynucleotides (ONs) are a powerful new class of drugs whose transport to the cytoplasm or nucleus inefficient and incompletely defined. Thus, to further extend our understanding of the mechanism of ON cellular uptake, the role of multivalent cations in ON cellular uptake was examined. All the multivalent cations tested, except magnesium, significantly increase ON uptake and was predictably related to the cation's electronegativity but only partially due to an increase in surface-binding. In addition, the primary mechanism of uptake is largely independent of trypsin-sensitive surface components, cellular energy, and several specific, calcium-dependent cellular processes. Therefore, ON cellular uptake may involve an interaction between multivalent cations and either the ON, the cell membrane, or both.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15216549600201561 | DOI Listing |
Eur J Pharmacol
January 2025
Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, F-94010 Creteil, France. Electronic address:
Pancreatic cancer (PCa) is one of the most devastating cancers with few clinical signs and no truly effective therapy. In recent years, our team has demonstrated that nucleolin antagonists such as N6L could be a therapeutic alternative for this disease. In order to study a possible clinic development of N6L (multivalent pseudopeptide), we undertook to study the effect of combination of N6L with chemotherapies classically used for PCa on the survival of pancreatic cancer cells.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India.
This study delves into the interplay of temperature, composition, tortuosity, and electrostatic interactions on ion diffusion within cation exchange membranes. It explores the temperature dependence (16-60 °C) of the self-diffusion coefficients (SDCs) of Ba and Eu ions within the Nafion 117 cation exchange membrane, particularly in the presence of Na ions. Radiotracer techniques and electrochemical impedance spectroscopy were employed to investigate these SDCs.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Since the first Chapter dealt with the well-known charge-charge interactions familiar to biologists, this concluding Chapter introduces some key electrical forces, probably much less familiar, perhaps even unknown. LLPS (liquid liquid phase separation) which we have seen involved in so much of cell biology depends on multivalent, π-π and cation-π electrical forces. How these arise is dealt with here and may be especially useful as an aide memoir to return to when such issues arise within the bulk of the text.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
One of the most important and challenging biological events of recent times has been the pandemic caused by SARS-CoV-2. Since the underpinning argument behind this book is the ubiquity of electrical forces driving multiple disparate biological events, consideration of key aspects of the SARS-CoV-2 structural proteins is included. Electrical regulation of spike protein, nucleocapsid protein, membrane protein, and envelope protein is included, with several of their activities regulated by LLPS and the multivalent and π-cation and π-π electrical forces that drive phase separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!