Objective: To test the hypothesis that the expanded population of non-proliferative CD28-CD8+ T cells in HIV disease have shortened telomeres, thereby providing evidence that increased rounds of CD8+ cell division occur during HIV disease, possibly leading to replicative senescence and exhaustion of CD8+ T-cell responses.

Design: CD8+ cells play a central role in control of HIV infection. In late HIV disease, an expanded population of CD28-CD8+ cells with reduced proliferative potential has been documented. A similar population of CD28-CD8+ cells has been identified in ageing humans, where telomere length measurements have suggested that these cells have reached the irreversible state of replicative senescence.

Methods: CD8+ cells from HIV-infected and control subjects were sorted by flow cytometry into CD28+ and CD28- fractions. Telomere lengths were determined as mean terminal restriction fragment (TRF) lengths by Southern hybridization.

Results: The TRF lengths of sorted CD28-CD8+ cells in HIV-infected subjects ranged between 5 and 7 kilobases (kb) and were significantly shorter than TRF lengths of CD28-CD8+ cells in uninfected subjects (P = 0.003). The TRF length in CD28-CD8+ cells from HIV-infected subjects was the same as that observed for centenarian peripheral blood mononuclear cells and is compatible with a state of replicative senescence.

Conclusions: The shortened telomeres in the CD28-CD8+ cells in HIV-infected subjects and the poor proliferative potential of these cells identifies CD8+ cell replicative senescence as a newly described feature of HIV disease. Our results provide a mechanism for the loss of CD8+ cell control of viral replication that accompanies advanced HIV disease. Replicative senescence may contribute to exhaustion of the T-cell response as a result of chronic HIV disease. Whether this phenomenon occurs in other chronic viral infections is unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002030-199607000-00001DOI Listing

Publication Analysis

Top Keywords

hiv disease
28
cd28-cd8+ cells
28
replicative senescence
16
cells hiv-infected
16
shortened telomeres
12
cells
12
cd8+ cell
12
trf lengths
12
hiv-infected subjects
12
hiv
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!