The development of insulin dependent diabetes mellitus (IDDM) and diabetes in the diabetes prone (DP) BB rat animal model of IDDM is thought to be due to an autoimmune process. Natural killer (NK) cells have been implicated but not proven to play a pathogenetic role in BB rats due to the increased NK cell number and activity found in these animals. We have recently reported that poly I:C, an inducer of cytokines and a potent enhancer of NK cell function, accelerates the development of diabetes in DP BB rats and induces diabetes in diabetes resistant (DR) BB rats. Since we have further demonstrated that poly I:C administration to BB rats increases NK cell number and levels of inducers of NK cell activity, interferon-alpha and IL-6 which is described therein, we tested the hypothesis that NK cell activity plays an important role in poly I:C accelerated disease. The role of NK cells in poly I:C accelerated diabetes and spontaneous diabetes was examined by determining whether selective depletion of NK cells using a rat NK cell specific antibody (anti-NKR-P1 antibody) alters the development of diabetes. The treatment of BB rats with anti-NKR-P1 antibody resulted in a significantly lower mean NK cell activity of splenic mononuclear cells than that found in control animals. However, the development of diabetes and degree of insulitis was not significantly different between treatment groups. BB rats administered anti-NKR-P1 antibody with poly I:C had a lower mean splenocyte NK cell activity and lower mean NK cell number within the peripheral blood and inflamed islets than rats administered poly I:C alone. However, anti-NKR-P1 antibody administration did not alter the accelerated development of diabetes or the degree of insulitis in poly I:C treated animals. These data document that NK cells do not play a major role in the pathogenesis of poly I:C accelerated diabetes or spontaneous diabetes in the DP BB rat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-8411(95)80021-2DOI Listing

Publication Analysis

Top Keywords

cell activity
20
poly accelerated
16
development diabetes
16
anti-nkr-p1 antibody
16
diabetes
15
spontaneous diabetes
12
diabetes diabetes
12
cell number
12
poly
9
cell
9

Similar Publications

Mycobacterium tuberculosis (M.tb) infection can lead to various outcomes, including active tuberculosis or latent tuberculosis infection (LTBI). Household contacts of TB cases have a high risk of acquiring LTBI.

View Article and Find Full Text PDF

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!