Our morphometric study of 30 dogs, mongrels, from 6.5 to 26.5 years of age, shows amyloid angiopathy in cortical and leptomeningeal vessels of all dogs older than 13.2 years of age, and the increase in the numerical density of amyloid-positive vessels correlated with age. Cluster analysis distinguished the group of six dogs (25%) to be relatively less affected, a large group of 13 animals (54%) to have moderate pathology, and five dogs (21%) to have severe amyloid angiopathy. Amyloid accumulation starts in large vessels, particularly in the tunica media of large arteries. Amyloid deposition appears to be associated with smooth muscle cells. Ultrastructural studies of samples from nine dogs are in agreement with in vitro studies suggesting that smooth muscle cells are the source of soluble amyloid beta. beta-protein polymerizes in the basal lamina of the tunica media. Muscle cells in the area of amyloid-beta accumulation degenerate and die. Thioflavin-positivity of only 24% of cortical and 66% of leptomeningeal beta-protein-positive vessels suggests that thioflavin-negative deposits contain soluble, not yet fibrillized protein and/or partially degraded and depolymerized amyloid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(95)01156-0DOI Listing

Publication Analysis

Top Keywords

muscle cells
12
years age
8
amyloid angiopathy
8
tunica media
8
smooth muscle
8
dogs
6
amyloid
6
vessels
5
origin amyloid
4
amyloid cerebral
4

Similar Publications

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

Indirect bypass using autologous tissue is effective in Moyamoya disease, especially among pediatric patients. This study aimed to evaluate the effectiveness of indirect bypass using DuraGen (absorbable artificial dura mater composed of collagen matrix), as a substitute for autologous tissue in a rat model of chronic cerebral hypoperfusion. Male Wistar rats were subjected to bilateral internal carotid artery occlusion and divided into three groups: a control group without bypass surgery, a group wherein indirect bypass was performed using the temporalis muscle (encephalo-myo-synangiosis [EMS] group), and a group wherein DuraGen was used (Dura group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!