Experiments were performed in vitro on fetal and newborn rat brainstem-spinal cord preparations to analyse the perinatal developmental changes in inspiratory motor output. The amplitude of the inspiratory bursts of the whole C4 ventral root (global extracellular recording), the firing patterns of 80 medullary inspiratory neurons (unitary extracellular recording) and the firing and membrane properties of 71 respiratory neurons in the C4 ventral horn (whole-cell recording) were analysed at embryonic day 18 (E18), 21 (E21) and post natal days 0 to 3 (P0-3). At E18, the amplitude of the C4 bursts was weak and variable from one respiratory cycle to the next, as well as the discharge pattern of most of the medullary inspiratory neurons. C4 motoneurons were immature, very excitable and displaying variable inspiratory discharges, but already able to deliver sustained bursts of potentials when depolarised. At E21 and P0-3, the amplitude of the C4 bursts was increased and stable, most of the medullary inspiratory neurons already were able to generate a stable firing pattern and C4 motoneurons showed maturational changes in terms of the resting potential, spike amplitude and input membrane resistance. This work suggests that the short period extending from E18 to E21 is a critical maturational period for the medullary respiratory network which becomes able to elaborate a stable respiratory motor output.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0165-3806(95)00170-0 | DOI Listing |
The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure ( , opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating µ-opioid receptors that are located throughout the respiratory control network in the brainstem.
View Article and Find Full Text PDFCrit Rev Toxicol
November 2024
Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions.
View Article and Find Full Text PDFRespir Physiol Neurobiol
January 2025
Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10-100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude.
View Article and Find Full Text PDFJ Neurophysiol
October 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!