The water-biopolymer cross-relaxation model, proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson. 70, 79 (1986)], explains the Larmor frequency dependence of T1 in many biological systems. However, the RH theory fails at low Larmor frequencies. In this paper, a more general version of the RH theory has been developed. This theory is valid at all frequencies. Use of the new expression for the spin-lattice relaxation rate (1/T1), earlier published experimental data in H2O/D2O bovine serum albumin, which had been measured over a wide frequency range (10 kHz to 100 MHz), were fitted over the entire frequency range. The agreement between theory and the experimental data is excellent. Theoretical expressions for the rotating-frame spin-lattice relaxation rate (1/T1(rho)) were also obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmrb.1996.0021DOI Listing

Publication Analysis

Top Keywords

spin-lattice relaxation
12
biological systems
8
relaxation rate
8
experimental data
8
frequency range
8
extension rorschach--hazlewood
4
rorschach--hazlewood theoretical
4
theoretical model
4
model spin-lattice
4
relaxation biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!