Hydrophilic-interaction liquid chromatography (HILIC) has recently been introduced as a highly efficient chromatographic technique for the separation of a wide range of solutes. The present work was performed with the aim of evaluating the potential utility of HILIC for the separation of postranslationally acetylated histones. The protein fractionations were generally achieved by using a weak cation-exchange column and an increasing sodium perchlorate gradient system in the presence of acetonitrile (70%, v/v) at pH 3.0. In combination with reversed-phase high-performance liquid chromatography (RP-HPLC) we have successfully separated various H2A variants and posttranslationally acetylated forms of H2A variants and H4 proteins in very pure form. An unambiguous assignment of the histone fractions obtained was performed using high-performance capillary and acid-urea-Triton gel electrophoresis. Our results demonstrate that for the analysis and isolation of modified core histone variants HILIC provides a new and important alternative to traditional separation techniques and will be useful in studying the biological function of histone acetylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0021-9673(96)00131-8DOI Listing

Publication Analysis

Top Keywords

liquid chromatography
12
hydrophilic-interaction liquid
8
h2a variants
8
separation
4
separation acetylated
4
acetylated core
4
core histones
4
histones hydrophilic-interaction
4
chromatography hydrophilic-interaction
4
chromatography hilic
4

Similar Publications

Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents.

View Article and Find Full Text PDF

The end groups of three- and four-arm star-shaped polylactides (PLA) with trimethylolpropane and pentaerythritol core structures were functionalized with acetic acid. Reaction products with different degrees of functionalization were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Additional gradient elution liquid adsorption chromatography (GELAC) measurements were performed to determine the degree of functionalization.

View Article and Find Full Text PDF

Simultaneous measurement of fentanyl, fentanyl analogues and other drugs of abuse by multiplex bead assay.

Toxicol Mech Methods

January 2025

Centers for Disease Control and Prevention, Division of Science Integration, Risk Evaluation Branch, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.

Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!