The present study was performed to characterize the immunologic potential of interstitial macrophages (INT) in comparison with alveolar macrophages (AL). The data showed that AL, compared with INT, have a more efficient phagocytic potential. In addition, they have a strong microbicidal activity and secrete large amounts of reactive oxygen radicals, nitric oxides, TNF, and IFN on appropriate stimulation. They also exert strong tumoricidal and parasiticidal activities. In contrast, INT are more efficient in releasing immunoregulatory cytokines such as IL-1 and IL-6. As determined by Ab staining, INT express more MHC class II molecules and are more effective in functioning as accessory cells for mitogen-stimulated lymphocyte proliferation compared with AL. Thus, AL appear to be particularly effective as nonspecific first line defense cells against infectious agents, whereas INT are equipped to cooperate with interstitial lymphocytes in inducing a specific immune reaction.
Download full-text PDF |
Source |
---|
Background: Anakinra is an interleukin-1 receptor antagonist (IL-1Ra). Since IL-1 has been shown to play a key role in the etiology of different autoinflammatory diseases, blocking its pathway has become an important therapeutic target, even in neonates.
Aims: We aimed to report our experience in using anakinra to treat specific neonatal inflammatory conditions.
Acta Biomater
January 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Glioblastoma (GBM) persists as a highly fatal malignancy, with current clinical treatments showing minimal progress over years. Interstitial photodynamic therapy (iPDT) holds promise due to its minimally invasive nature and low toxicity but is impeded by poor photosensitizer penetration and inadequate GBM targeting. Here, we developed a biomimetic pure-drug nanomedicine (MM@CT), which co-assembles the photosensitizer chlorin e6 (Ce6) and the first-line chemotherapeutic drug (temozolomide, TMZ) for GBM, then camouflaged with macrophage membranes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.
View Article and Find Full Text PDFJ Toxicol Sci
January 2025
Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University.
A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!