Clinical and genetic abnormalities in patients with Friedreich's ataxia.

N Engl J Med

Fédération de Neurologie and INSERM Unité 289, Hôpital de la Saltpétriere, Paris, France.

Published: October 1996

Background: Friedreich's ataxia, the most common inherited ataxia, is associated with a mutation that consists of an unstable expansion of GAA repeats in the first intron of the frataxin gene on chromosome 9, which encodes a protein of unknown function.

Methods: We studied 187 patients with autosomal recessive ataxia, determined the size of the GAA expansions, and analyzed the clinical manifestations in relation to the number of GAA repeats and the duration of disease.

Results: One hundred forty of the 187 patients, with ages at onset ranging from 2 to 51 years, were homozygous for a GAA expansion that had 120 to 1700 repeats of the trinucleotides. About one quarter of the patients, despite being homozygous, had atypical Friedreich's ataxia; they were older at presentation and had intact tendon reflexes. Larger GAA expansions correlated with earlier age at onset and shorter times to loss of ambulation. The size of the GAA expansions (and particularly that of the smaller of each pair) was associated with the frequency of cardiomyopathy and loss of reflexes in the upper limbs. The GAA repeats were unstable during transmission.

Conclusions: The clinical spectrum of Friedreich's ataxia is broader than previously recognized, and the direct molecular test for the GAA expansion on chromosome 9 is useful for diagnosis, determination of prognosis, and genetic counseling.

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJM199610173351601DOI Listing

Publication Analysis

Top Keywords

friedreich's ataxia
16
gaa repeats
12
gaa expansions
12
gaa
8
187 patients
8
size gaa
8
gaa expansion
8
ataxia
6
clinical genetic
4
genetic abnormalities
4

Similar Publications

Diagnosis of hereditary ataxias: a real-world single center experience.

J Neurol

January 2025

Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.

Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.

View Article and Find Full Text PDF

Introduction: The Friedreich Ataxia Rating Scale-Activities of Daily Living (FARS-ADL) is a validated and highly utilized measure for evaluating patients with Friedreich Ataxia. While construct validity of FARS-ADL has been shown for spinocerebellar ataxia (SCA), content validity has not been established.

Methods: Individuals with SCA1 or SCA3 (n = 7) and healthcare professionals (HCPs) with SCA expertise (n = 8) participated in qualitative interviews evaluating the relevance, clarity, and clinical meaningfulness of FARS-ADL for assessment of individuals with SCA.

View Article and Find Full Text PDF

Friedreich Ataxia: An (Almost) 30-Year History After Gene Discovery.

Neurol Genet

February 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.

In the late 1800s, Nikolaus Friedreich first described "degenerative atrophy of the posterior columns of the spinal cord," noting its connection to progressive ataxia, sensory loss, and muscle weakness, now recognized as Friedreich ataxia (FRDA). Renewed interest in the disease in the 1970s and 80s by the Quebec Cooperative Group and by Anita Harding led to the development of clinical diagnostic criteria and insights into associated biochemical abnormalities, although the primary defect remained unknown. In 1988, Susan Chamberlain mapped FRDA's location on chromosome 9.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient.

View Article and Find Full Text PDF

Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!