The active site of myosin.

Annu Rev Physiol

Institute for Enzyme Research, University of Wisconsin, Madison 53705, USA.

Published: October 1996

The significance of myosin has been expanded recently with the realization that it is found in every eukaryotic cell, where it has a role in cytokinesis, cell division, and vesicle transport. Advances in molecular genetics and expression systems related to myosin and actin have helped to reveal the extent of the myosin superfamily. New motility assays and techniques have provided information about the residues involved in ATP hydrolysis and the conformational change induced by nucleotide binding. The results of these techniques revealing structural and functional information combined with previous studies of the active site of myosin should provide future direction for studying this exciting and rapidly moving area of biochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.ph.58.030196.003323DOI Listing

Publication Analysis

Top Keywords

active site
8
site myosin
8
myosin
5
myosin significance
4
significance myosin
4
myosin expanded
4
expanded realization
4
realization eukaryotic
4
eukaryotic cell
4
cell role
4

Similar Publications

Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation.

Nat Commun

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.

View Article and Find Full Text PDF

Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds.

Anal Chim Acta

January 2025

School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:

Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.

View Article and Find Full Text PDF

Introduction of curvature index and improvement of calibration curves used in ion chromatography (IC), atomic absorption spectrometry (AAS), UV-vis spectrophotometry and catalytic combustion.

Anal Chim Acta

January 2025

Wastewater Laboratory Targoviste, Water Company Targoviste-Dambovita, Calea Ploiesti Street, 130 145, Targoviste, Romania. Electronic address:

Background: The calibration curve represents the relationship between known CRM and the response of the instrument (e.g absorbance). Most of the time, in analytical chemistry standards, the linear function (of the 1st degree) is used to characterize the calibration curves.

View Article and Find Full Text PDF

Background: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson's disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!