Tumor necrosis factor alpha (TNF-alpha) gene therapy targeted by ionizing radiation selectively damages tumor vasculature.

Cancer Res

Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Illinois 60637, USA.

Published: October 1996

Intratumoral injection of an adenoviral vector containing radiation-inducible DNA sequences of the Egr-1 promoter linked to a cDNA encoding tumor necrosis factor (TNF) alpha (Ad.Egr-TNF) enhances the tumoricidal action of ionizing radiation in a human epidermoid carcinoma xenograft (SQ-20B). The dominant histopathological feature in tumor-bearing animals treated with Ad.Egr-TNF and irradiation is extensive intratumoral vascular thrombosis and tumor necrosis. Thrombosis and necrosis are not observed in animals treated with either the viral construct encoding TNF-alpha or radiation and did not occur in irradiated normal tissues adjacent to tumor in animals injected with Ad.Egr-TNF. To determine if the occlusive effects of Ad.Egr-TNF and X-irradiation were specific for tumor vessels, non-tumor-bearing mice were irradiated after receiving i.m. injection of Ad.Egr-TNF at viral titers 20-100 times greater than titers injected intratumorally. No vascular thrombosis was observed in the treated normal tissues. Combined Ad.Egr-TNF and radiation produced occlusion of tumor microvessels without significant normal tissue damage. Taken together, these data suggest that the interaction between radiation inducible TNF-alpha and X-irradiation occurs selectively within the tumor vessels.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor necrosis
12
tumor
8
necrosis factor
8
ionizing radiation
8
animals treated
8
vascular thrombosis
8
normal tissues
8
tumor vessels
8
adegr-tnf
6
radiation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!