The rad21 gene of Schizosaccharomyces pombe is involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs of rad21 is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21(sp) (mouse homolog of Rad21, S. pombe) and hHR21(sp) (human homolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21sp mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment. hHR21sp mRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21sp transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed that mHR21sp resided on chromosome 15D3, whereas hHR21sp localized to the syntenic 8q24 region. Elevated expression of mHR21sp in testis and thymus supports a possible role for the rad21 mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation of rad21, retained from S. pombe to human, is consistent with a conservation of function between S. pombe and human rad21 genes.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.1996.0466DOI Listing

Publication Analysis

Top Keywords

rad21
9
schizosaccharomyces pombe
8
dna double-strand
8
rad21 mammalian
8
homolog rad21
8
rad21 pombe
8
testis thymus
8
cell cycle
8
pombe human
8
pombe
7

Similar Publications

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Genomic characterization and molecular predictive biomarkers for chemotherapy in patients with metastatic triple-negative breast cancer treated in a real-world setting.

Breast

January 2025

Department of Surgery, Kalmar Hospital, Sweden; Department of Clinical Pathology, Kalmar Hospital, Sweden; Department of Oncology, Örebro University Hospital, Sweden. Electronic address:

Purpose: We aimed to characterize genomic alterations with potential prognostic or predictive significance in patients with metastatic triple-negative breast cancer (mTNBC) treated with chemotherapy in a real-world setting.

Patients And Methods: Next-generation sequencing with FoundationOne® CDx was conducted primarily on primary tumor tissue from 112 consecutive patients with mTNBC. Genomic alterations were subdivided into canonical oncogenic pathways and noted for their involvement in homologous recombination deficiency (HRD).

View Article and Find Full Text PDF

Cornelia de Lange Syndrome Accompanied by Cholelithiasis and Nephrolithiasis: A Case Report.

Children (Basel)

November 2024

Departments of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan 49267, Republic of Korea.

Cornelia de Lange syndrome (CdLS) is a rare genetic disorder characterized by a distinctive facial appearance, growth/cognitive retardation, developmental delay, skeletal malformation, hypertrichosis, and other abnormalities. Patients with mild CdLS have less severe phenotypes, while retaining representative facial features. Mutations in the genes , , , , and have been associated with CdLS, with mutations in accounting for approximately 60% of cases.

View Article and Find Full Text PDF

Predicting CTCF cell type active binding sites in human genome.

Sci Rep

December 2024

School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China.

The CCCTC-binding factor (CTCF) is pivotal in orchestrating diverse biological functions across the human genome, yet the mechanisms driving its cell type-active DNA binding affinity remain underexplored. Here, we collected ChIP-seq data from 67 cell lines in ENCODE, constructed a unique dataset of cell type-active CTCF binding sites (CBS), and trained convolutional neural networks (CNN) to dissect the patterns of CTCF binding activity. Our analysis reveals that transcription factors RAD21/SMC3 and chromatin accessibility are more predictive compared to sequence motifs and histone modifications.

View Article and Find Full Text PDF

Cornelia de Lange syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder. Pathogenic variants in genes encoding the structural subunits and regulatory proteins of the cohesin complex (, , , , and ) are the primary contributors to the pathogenesis of CdLS. Pathogenic variations in these genes disrupt normal cohesin function, leading to the syndrome's diverse and complex clinical presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!