The yeast two-hybrid system is a powerful experimental approach for the characterization of protein/ protein interactions. A unique strength of the yeast two-hybrid system is the provision for genetic selection techniques that enable the identification of specific protein/protein interactions. We now report the development of a modified yeast two-hybrid system which enables genetic selection against a specific protein/protein interaction. This reverse two-hybrid system utilizes a yeast strain which is resistant to cycloheximide due to the presence of a mutant cyh2 gene. This strain also contains the wild-type CYH2 allele under the transcriptional control of the Gal1 promoter. Expression of the wild-type Gal4 protein is sufficient to restore growth sensitivity to cycloheximide. Growth sensitivity towards cycloheximide is also restored by the coexpression of the avian c-Rel protein and its I kappa B alpha counterpart, p40, as Gal4 fusion proteins. Restoration of growth sensitivity towards cycloheximide requires the association of c-Rel and p40 at the Gal1 promoter and correlates with the ability of the c-Rel/p40 interaction to activate expression from the Gal1 promoter. A genetic selection scheme against specific protein/protein interactions may be a valuable tool for the analysis of protein/protein interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC146093PMC
http://dx.doi.org/10.1093/nar/24.17.3341DOI Listing

Publication Analysis

Top Keywords

two-hybrid system
20
specific protein/protein
16
protein/protein interactions
16
yeast two-hybrid
12
genetic selection
12
gal1 promoter
12
growth sensitivity
12
sensitivity cycloheximide
12
reverse two-hybrid
8
selection specific
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!