Although automatic processing is becoming more widely available in general dental practice, there is little objective information regarding the quality of this type of processing. Thus a postal study was undertaken to compare manual and automatic processing using a questionnaire together with a standardised, pre-exposed test radiograph for routine processing. Analysis of variance showed significant differences between the manually processed, automatically processed and control test films, in respect of D Min (P < 0.001), test strip (P < 0.001), and step density values (P < 0.01) but not for D Max (P > 0.1). The manually processed test films generally had significantly less density than the automatically processed test films or control test films.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bdj.4809171DOI Listing

Publication Analysis

Top Keywords

test films
16
automatic processing
12
manual automatic
8
processing general
8
general dental
8
dental practice
8
manually processed
8
automatically processed
8
control test
8
processed test
8

Similar Publications

Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.

View Article and Find Full Text PDF

Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies.

Nanomaterials (Basel)

December 2024

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules.

View Article and Find Full Text PDF

Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.

View Article and Find Full Text PDF

One-Step Fabrication Process of Silica-Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films.

Biomimetics (Basel)

December 2024

Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.

View Article and Find Full Text PDF

Touch Empowerment: Self-Sustaining e-Tattoo Thermoelectric System for Temperature Mapping.

Adv Sci (Weinh)

December 2024

IFIMUP Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal.

In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!