Stimulation of the 5-HT2A receptors by serotonin has been reported to exert an excitatory effect on neocortical neurons in rats and mice, to facilitate ischaemia-induced release of excitatory amino acids and to mediate the vasomotor constrictor component of the response of blood vessels to 5-HT. 5-HT2A receptor antagonists have, therefore, been proposed as potential protectants against the effects of cerebral ischaemia. The aim of this study was to evaluate the effects of two relatively selective 5-HT2A receptor antagonists, ketanserin and ritanserin, on delayed hyperactivity and the ensuing neuronal degeneration induced by 3 minutes of bilateral carotid artery ligation in Mongolian gerbils. Effects were compared to that of flunarizine, which blocks calcium overload and served as a positive control in this paradigm. Temporal and/or rectal temperatures were measured and strictly controlled during the ischaemia and the early reperfusion phase. Locomotor activity was measured one day after the ischaemia and neuronal degeneration quantified 7 days later using an image analysis system (Quantimet 570, Leica). Global ischaemia in gerbils elicits hyperactivity associated with a delayed neuronal degeneration predominantly in the CA1 zone of the hippocampus. Ketanserin and ritanserin (3 and 10 mg/kg ip, twice daily for 3 days, pre- and postischaemia) did not protect the CA1 neurons against ischaemic damage. The postischaemic hyperactivity was inhibited only with the higher dose of ketanserin. As previously reported, flunarizine (30 mg/kg po) markedly reduced neuronal degeneration (-44.2%, p < 0.01) and totally abolished the ischaemia-induced hyperactivity. These data demonstrate that ketanserin and ritanserin are not effective protectants of the gerbil hippocampus against ischaemic damage when the body temperature of the animals is controlled, thus suggesting that 5-HT2A receptors are not directly implicated in the pathogenesis of global cerebral ischaemia in this model.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1472-8206.1995.tb00534.xDOI Listing

Publication Analysis

Top Keywords

neuronal degeneration
16
5-ht2a receptor
12
receptor antagonists
12
cerebral ischaemia
12
ketanserin ritanserin
12
global cerebral
8
ischaemia gerbils
8
5-ht2a receptors
8
ischaemic damage
8
ischaemia
6

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.

Background: Neurite degeneration is increasingly suspected to represent a causal feature of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Therefore, sensitive and specific imaging biomarkers of neuronal degeneration are needed to elucidate the mechanisms underlying cognitive impairment in MCI and AD. However, the recently developed Neurite Orientation Dispersion and Density Imaging (NODDI) MRI technique, used to measure the neurite density index (NDI), has some limitations.

View Article and Find Full Text PDF

Background: Reactive astrogliosis refers to functional and morphological changes in astrocytes that occur with neuronal damage in numerous neurological conditions. PET tracers targeting monoamine oxidase B (MAO-B) are used to visualize reactive astrogliosis in the living brain. [F]SMBT-1, a MAO-B selective PET tracer, was developed by modifying the chemical structure of [F]THK5351.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.

Background: Synaptic dysfunction occurs in the early stages of neurodegenerative diseases and leads to the breakdown of connections within neuronal networks. Therefore, biomarkers reflecting this process, such as neurogranin (Ng), might be useful to study disease pathophysiology and aid in diagnostics. Ng is crucial for long-term potentiation and memory consolidation, and plays a central role in synaptic plasticity.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Munich Cluster for Systems Neurology (SyNergy), Munich, Bavaria, Germany.

Background: In Alzheimer's disease (AD), cortical tau aggregation is a strong predictor of cortical brain atrophy as shown by MRI and PET studies, particularly driving the degeneration of neuronal somata in the grey matter. However, tau's physiological role is to stabilize microtubules within axons in the brain's white matter (WM) pathways. Therefore, tau's white-to-grey-matter translocation and aggregation in neurofibrillary tangles close to neuronal somata may induce WM degeneration through destabilization of axonal microtubule integrity.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Clinical Research Center, Department of Medical Research, Yangon, Myanmar.

Background: Diabetes mellitus increases the risk of cognitive decline and neuronal degeneration. In diabetes, persistently elevated blood sugar levels cause not only the generation of reactive oxygen species (ROS), but also systemic inflammation (1). This raises an intriguing question: do patients with controlled or uncontrolled diabetes exhibit similar levels of oxidative stress and systemic inflammation as reliable predictors of peripheral neuropathy and cognitive decline?

Method: In 2019, 150 participants with diabetes mellitus who had been diagnosed for more than 5 years were voluntarily enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!