AI Article Synopsis

  • RU486 is an effective anti-progestin in humans but fails to work in chickens and hamsters due to a specific change in the progesterone receptor structure (cysteine instead of glycine at position 722).
  • The tammar wallaby also shows resistance to RU486, having unique amino acid substitutions in its progesterone receptor that differ from humans.
  • These changes in amino acids are linked to the binding properties of the receptor and suggest significant roles for certain residues in accommodating steroid hormones, indicating broader implications for receptor function across different species.

Article Abstract

RU486 acts as a potent anti-progestin in humans but does not antagonise progesterone action in the chicken or hamster reflecting a substitution in the ligand binding domain (LBD) of cysteine for glycine in both the chicken and the hamster progesterone receptor (PR), at the position corresponding to codon 722 of the human PR. The tammar wallaby, Macropus eugenii, is also resistant to the effects of RU486. Cloning of a partial cDNA of the PR in the tammar wallaby reveals a glycine to alanine substitution (gly 722 in the human PR), as well as a glutamine to histidine substitution two amino acids upstream of this alanine residue. Both the glycine and glutamine residues are substituted in all three resistant species. These substitutions are also found in the mineralocorticoid receptor, which also does not bind RU486, and suggest an important role for these residues in the formation of the 11-beta pocket of the receptor, which accommodates the bulky side-chains of 11-beta substituted steroids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0303-7207(96)03807-5DOI Listing

Publication Analysis

Top Keywords

tammar wallaby
12
wallaby macropus
8
macropus eugenii
8
chicken hamster
8
722 human
8
molecular basis
4
ru486
4
basis ru486
4
ru486 resistance
4
resistance tammar
4

Similar Publications

Article Synopsis
  • - Bisphenol-A (BPA), a common chemical in plastics, negatively impacts fertility, but its specific effects on early ovarian development in mammals, particularly marsupials like the tammar wallaby, are not well understood.
  • - The study observed key ovarian development markers at specific intervals from birth to 10 days post-partum, revealing that ovarian differentiation begins around days 2-4, with significant changes in gene expression and protein localization.
  • - BPA exposure during the critical early days of development suppressed normal ovarian differentiation, inhibiting the formation of ovarian structures and reducing the expression of important differentiation genes at day 10 post-partum.
View Article and Find Full Text PDF
Article Synopsis
  • The MAPK genes are important for gonadal differentiation in eutherian mammals, and this study investigates their role in marsupials, specifically the tammar wallaby.
  • The researchers used a MAPK inhibitor, SB202190, to study its effects on gonads and found it reduced levels of key genes SOX9 and AMH in XY gonads.
  • The study concludes that the MAPK pathway is involved in testis differentiation in marsupials, similar to its role in eutherian mammals.
View Article and Find Full Text PDF

The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby.

Proc Natl Acad Sci U S A

October 2024

Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.

Article Synopsis
  • The first mammals that gave birth to live young had short pregnancies that involved some inflammation between the mother and the baby.
  • Many marsupials, like kangaroos and wallabies, still keep this short pregnancy style, but their way of handling inflammation is different from other mammals called eutherians.
  • In wallabies, they don't show a strong inflammatory reaction at the start of pregnancy, allowing them to have a longer gestation process compared to other marsupials.
View Article and Find Full Text PDF

PRKACB is a novel imprinted gene in marsupials.

Epigenetics Chromatin

September 2024

School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.

Article Synopsis
  • The study talks about a special way some genes work differently depending on whether they come from the mom or dad, called genomic imprinting, which is found in certain mammals like koalas and other marsupials.
  • Researchers found a specific area in the gene PRKACB that showed this imprinting by checking how a special chemical called methylation was added to it.
  • They discovered that in two types of marsupials, the gene from the mom was modified differently than from the dad, showing that PRKACB is a new gene that behaves this way in marsupials, which might be important for its function in these animals.
View Article and Find Full Text PDF
Article Synopsis
  • X chromosome inactivation (XCI) is an epigenetic phenomenon where one X chromosome in females is silenced, differing between eutherian (random silencing) and marsupial mammals (always paternal silencing).
  • In eutherians, the inactive X shows high DNA methylation at key sites, while marsupials have lower methylation levels on the paternal X.
  • The study focused on the tammar wallaby's X chromosome during sperm development, finding that the paternal X has a DNA methylation profile similar to the inactive X in female tissues, suggesting it may serve as an imprint for paternal XCI in marsupials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!