Ionic reabsorption along the ascending limb of Henle's loop (TAL) is controlled by hormonal stimulation. Most of the hormones that affect this reabsorption regulate ionic transporter activity via cAMP, and some of these hormonal actions have been shown to be modulated by interstitial osmolarity. We studied the early effects of increasing extracellular urea concentration on the production of cAMP induced by arginine vasopressin (AVP) and forskolin in a suspension of medullary portions of TAL (MTAL) prepared from mouse kidney. The addition of urea, performed fifteen minutes before adenylyl cyclase stimulation, decreased both AVP- and forskolin-induced cAMP production. This effect, observed both in the presence and the absence of phosphodiesterase inhibition, was optimal with 300 mmol/liter urea. Addition of urea to the extracellular medium disturbed several cellular parameters, but the decrease in cAMP production appeared to be mediated by the activation of both the protein kinase A and a phosphatase rather than by the modifications in phospholipid metabolism. Since cAMP is the major cytosolic transductional factor in MTAL cells, urea present in the medullary interstitium may thus be considered as an important modulator of hormonal actions in this segment of the nephron.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.1996.282DOI Listing

Publication Analysis

Top Keywords

camp production
12
extracellular urea
8
urea concentration
8
hormonal actions
8
addition urea
8
camp
6
urea
5
concentration modulates
4
modulates camp
4
production
4

Similar Publications

Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.

View Article and Find Full Text PDF

Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of .

Biofilm

June 2025

Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .

View Article and Find Full Text PDF

Proteomics and metabolomics analyses of mechanism underlying bovine sperm cryoinjury.

BMC Genomics

January 2025

College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.

Background: The cryoinjury of semen during cryopreservation reduces sperm motility, constraining the application of artificial insemination (AI) in bovine reproduction. Some fertility markers, related to sperm motility before and after freezing have been identified. However, little is known about the biological mechanism through which freezing reduces sperm motility.

View Article and Find Full Text PDF

This study aimed to examine potential changes in the anthropometric and motor characteristics of volleyball players aged 17.98 ± 0.51 years after participation in a week-long sports camp.

View Article and Find Full Text PDF

Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!