The Sendai virus V protein interacts with the NP protein to regulate viral genome RNA replication.

Virology

Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville 32610-0266, USA.

Published: August 1996

The interactions of Sendai virus proteins required for viral RNA synthesis have been characterized both by the yeast two-hybrid system and through the use of glutathione S-transferase (gst)-viral fusion proteins synthesized in mammalian cells. Using the two-hybrid system we have confirmed the previously identified P-L (RNA polymerase), NPo-P (encapsidation substrate), and P-P complexes and now demonstrate NP-NP and NPo-V protein interactions. Expression of gstP and P proteins and binding to glutathione-Sepharose beads as a measure of complex formation confirmed the P-P interaction. The P-gstP binding occurred only on expression of the proteins in the same cell and was mapped to amino acids 345-411. We also show that full-length and deletion gstV and gstW proteins bound NPo protein when these sets of proteins were coexpressed and have identified one required region from amino acids 78-316. Neither gstV nor gstW bound NP assembled into nucleocapsids. Furthermore, both V and W proteins lacking the N-terminal 77 amino acids inhibited DI-H genome replication in vitro, showing the biological relevance of the remaining region. We propose that the specific inhibition of genome replication by V and W proteins occurs through interference with either the formation or the use of the NPo-P encapsidation substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.1996.0435DOI Listing

Publication Analysis

Top Keywords

amino acids
12
sendai virus
8
proteins
8
two-hybrid system
8
npo-p encapsidation
8
encapsidation substrate
8
gstv gstw
8
genome replication
8
protein
4
virus protein
4

Similar Publications

Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physics-based approaches struggle to capture the small, competing contributions in the complex protein environment, while machine learning (ML) is hampered by the scarcity of experimental data. Here, we report the development of p ML (KaML) models based on decision trees and graph attention networks (GAT), exploiting physicochemical understanding and a new experiment p database (PKAD-3) enriched with highly shifted p's.

View Article and Find Full Text PDF

Natural biomolecules for cell-interface engineering.

Chem Sci

January 2025

State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China

Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation.

View Article and Find Full Text PDF

The amino acid permease contributes to tomato growth and salt tolerance by mediating branched-chain amino acid transport.

Hortic Res

January 2025

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.

Branched-chain amino acids (BCAAs) are essential amino acids in tomato () required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato () gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of protein aggregates, which are thought to be influenced by posttranslational modifications (PTMs). Dehydroamino acids (DHAAs) are rarely observed PTMs that contain an electrophilic alkene capable of forming protein-protein crosslinks, which may lead to protein aggregation. We report here the discovery of DHAAs in the protein aggregates from AD, constituting an unknown and previously unsuspected source of extensive proteomic complexity.

View Article and Find Full Text PDF

Background: (BC), also named Niuhuang in Chinese, is utilized as a resuscitation drug in Traditional Chinese Medicine (TCM) for the treatment of neurological disorders. Ischemic stroke (IS) is a significant global public health issue that currently lacks safe and effective therapeutic drugs. Ongoing efforts are focused on identifying effective treatment strategies from Traditional, Complementary, and Integrative Medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!