Astrocytes secrete laminin-like molecules in culture and may represent a major source of laminin in the developing central nervous system, yet these laminins have not been extensively characterized. We previously reported the presence of an astrocyte-derived variant laminin in media conditioned by human U251 MG astrocytoma cells. This laminin was partially purified in a highly anionic Mono Q fraction with strong adhesion activity for fibroblasts and glial cells (Aukhil et al. (1990) Matrix 10: 98-111). We now show that glial laminin could be dissociated from an anionic species, perhaps an approximately 400-kDa keratan sulfate proteoglycan present in the preparation, by a second round of Mono Q anion exchange chromatography in the presence of 6 M urea. Cell adhesion activity remained tightly associated with laminin-containing fractions, suggesting that glial laminin was responsible for the adhesion activity in the original preparation. Immunochemical and SDS-PAGE gel analyses of laminin heterotrimers demonstrated that glial laminin contained the beta 2 and gamma 1 chains in disulfide-bonded heterotrimeric complexes with a 360-kDa chain, a 320-kDa chain, or a postulated approximately 200-kDa chain. While these chains were not recognized by antibodies directed against the alpha 1-, alpha 2-, or alpha 3-related laminin chains, rotary shadowed glial laminin molecules appeared to contain alpha chains, as judged by the presence of an apparent G-domain terminating the long arm of each laminin molecule. These findings suggest that glial laminin contains one or more variant alpha chains, perhaps related to one of the more recently described alpha chains, alpha 3B, alpha 4, or alpha 5. Together our results implicate human U251 MG glial laminin as a previously uncharacterized laminin isoform with strong adhesive activity for fibroblasts and glial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.1996.0252 | DOI Listing |
Int J Mol Sci
November 2024
Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia.
BMC Neurosci
November 2024
Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646099, China.
Objective: Observing the effects of Tetramethylpyrazine (TMP) on the expression of Collagen IV and Laminin in neurovascular basement membrane and the apoptosis of vascular endothelial cells, and to study the mechanism of TMP in the treatment of sciatic nerve injury.
Results: Compared with the NS group, the TMP group had a significant increase in the sciatic nerve function index (P < 0.01).
Biomaterials
April 2025
Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. Electronic address:
Peripheral nerve injury (PNI) involving the loss of sensory and movement functions is challenging to repair. Although the gold standard of PNI repair is still the use of autologous nerve grafts, the destruction of the donor side is inevitable. In the present study, peripheral nerve tissueoids (PNTs) composed of a Schwann cell (SC)-based neurotrophin-3 (NT-3) delivery system and a decellularized optic nerve (DON) with naturally oriented channels were engineered to investigate the mechanism of PNTs in nerve regeneration.
View Article and Find Full Text PDFCytometry A
December 2024
Lab of Cell Biology and Histology, Dept. Veterinary Sciences, University of Antwerp, Antwerpen, Belgium.
The water channel aquaporin 4 (AQP4) contributes to water flow and waste removal across the blood-brain barrier and its levels, organization and localization are perturbed in various neurological diseases, including Alzheimer's Disease. This renders AQP4 a potentially valuable therapeutic target. However, most functional assays aimed at identifying modulators of AQP4 function are performed with primary rodent cells and do not consider inter-cellular variations in AQP4 abundance and presentation.
View Article and Find Full Text PDFCNS Neurosci Ther
November 2024
Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
Aim: To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI).
Methods: Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!