Download full-text PDF |
Source |
---|
Life Sci
December 2024
Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia. Electronic address:
Aims: Cancer cachexia affects up to 80 % of patients with advanced cancer and accounts for >20 % of all cancer-related deaths. Sarcolemmal localization of dystrophin, a key protein within the dystrophin-glycoprotein complex (DGC), is perturbed in multiple muscle wasting conditions, including cancer cachexia, indicating a potential role for dystrophin in the maintenance of muscle mass. Strategies to preserve dystrophin expression at the sarcolemma might therefore combat muscle wasting.
View Article and Find Full Text PDFNature
December 2024
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC). The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive.
View Article and Find Full Text PDFNature
December 2024
Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
The dystrophin glycoprotein complex (DGC) has a crucial role in maintaining cell membrane stability and integrity by connecting the intracellular cytoskeleton with the surrounding extracellular matrix. Dysfunction of dystrophin and its associated proteins results in muscular dystrophy, a disorder characterized by progressive muscle weakness and degeneration. Despite the important roles of the DGC in physiology and pathology, its structural details remain largely unknown, hindering a comprehensive understanding of its assembly and function.
View Article and Find Full Text PDFStructure
November 2024
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA. Electronic address:
Sci Rep
August 2024
Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Integrin adaptor proteins, like tensin-2, are crucial for cell adhesion and signaling. However, the function of tensin-2 beyond localizing to focal adhesions remain poorly understood. We utilized proximity-dependent biotinylation and Strep-tag affinity proteomics to identify interaction partners of tensin-2 in Flp-In 293 T-REx cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!